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Abstract

A clear connection between basic research and applied management is often

missing or difficult to discern. We present a case study of integration of basic

research with applied management for estimating abundance of gray wolves

(Canis lupus) in Montana, USA. Estimating wolf abundance is a key compo-

nent of wolf management but is costly and time intensive as wolf populations

continue to grow. We developed a multimodel approach using an occupancy

model, mechanistic territory model, and empirical group size model to

improve abundance estimates while reducing monitoring effort. Whereas

field-based wolf counts generally rely on costly, difficult-to-collect monitoring

data, especially for larger areas or population sizes, our approach efficiently

uses readily available wolf observation data and introduces models focused on

biological mechanisms underlying territorial and social behavior. In a three-

part process, the occupancy model first estimates the extent of wolf distribu-

tion in Montana, based on environmental covariates and wolf observations.

The spatially explicit mechanistic territory model predicts territory sizes using

simple behavioral rules and data on prey resources, terrain ruggedness, and

human density. Together, these models predict the number of packs. An

empirical pack size model based on 14 years of data demonstrates that pack

sizes are positively related to local densities of packs, and negatively related to

terrain ruggedness, local mortalities, and intensity of harvest management.

Total abundance estimates for given areas are derived by combining estimated

numbers of packs and pack sizes. We estimated the Montana wolf population

to be smallest in the first year of our study, with 91 packs and 654 wolves in

2007, followed by a population peak in 2011 with 1252 wolves. The population

declined ~6% thereafter, coincident with implementation of legal harvest in

Montana. Recent numbers have largely stabilized at an average of 191 packs

and 1141 wolves from 2016 to 2020. This new approach accounts for biologi-

cally based, spatially explicit predictions of behavior to provide more accurate
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estimates of carnivore abundance at finer spatial scales. By integrating basic

and applied research, our approach can therefore better inform decision-

making and meet management needs.

KEYWORD S
behavioral models, Canis lupus, monitoring, Montana, occupancy model, sociality,
territoriality, wolves

INTRODUCTION

Wildlife researchers and managers may often assume that
basic ecological research that aims to advance scientific
theory tends to poorly align with applied management
needs (Belovsky et al., 2004; Gavin, 1989; Nudds &
Morrison, 1991; Sells et al., 2018). However, basic research
that reveals how and why patterns occur in nature can pro-
vide an understanding of the levers underlying a system
that managers can modify to meet conservation objectives.
Compared with research of phenomenological patterns,
research focused on biological mechanisms tends to pro-
duce inferences that are more reliable beyond the scale of
the original study, therefore enhancing utility to conserva-
tion (Aarts et al., 2008; Sells et al., 2018).

The recovery of an endangered species presents a
unique opportunity to meld basic research and applied
management. Endangered populations are typically small
and closely monitored, generating detailed data on move-
ment, behavior, and demographics. As an endangered
species recovers, their populations ideally grow in abun-
dance and distribution, which often necessitates changes
in monitoring methods and therefore the quality and
quantity of population-wide data collected. Therefore,
integrating basic ecological research into applied man-
agement may help address data limitations as the popula-
tion recovers while also improving the ability to predict
population trends and responses to management actions.

Here we present a novel approach to integrating basic
research focused on biological mechanisms into wildlife
management. Our approach combines an occupancy
model, commonly used for wildlife monitoring and conser-
vation, with mechanistic and empirical models based on
theory and animal behavior to predict behavioral responses
to environmental conditions and resulting space use and
population abundance. We use the recovery and long-term
management of gray wolves (Canis lupus) in the northern
Rocky Mountains, USA, as a case study.

After extirpation of gray wolves across most of the con-
tiguous USA in the 20th century, wolf numbers began
rebounding in recent decades. Wolf recovery in the
United States Northern Rocky Mountains began through
natural recolonization of northwest Montana in the 1980s

(Ream et al., 1989). Following reintroductions into Yellow-
stone National Park and Idaho in 1995 and 1996 (Bangs &
Fritts, 1996), wolf numbers increased, particularly in
Montana and Idaho. Wolves were delisted in those states
in 2009 (Bradley et al., 2014; Fritts et al., 1997), relisted in
2010 due to court challenges, and again delisted in 2011 via
congressional action. Delisting returned management
authority to each state, and harvest seasons were carried
out in 2009 and from 2011 onward.

Field monitoring has been an important element of
wolf recovery. Intensive monitoring can help managers
estimate minimum counts, determine if recovery goals
are met, set public harvest seasons, develop livestock depre-
dation policies, evaluate the effects of public harvest and
depredation management, and communicate with stake-
holders and the public (e.g., Inman et al., 2019).
Monitoring elusive large carnivores is challenging, however
(Boitani et al., 2012). Minimum counts of packs, wolves,
and pups becomes exceedingly difficult and costly once a
population recovers to numerous packs spread across wide
areas. Furthermore, monitoring often relies on deploying
radio collars and Global Positioning System (GPS) collars,
which can become increasingly challenging and costly due
to the difficulty of capture and frequent collar loss caused
by collar failures and mortalities. Public harvest of wolves
can increase the frequency in turnover of packs and affect
behavioral dynamics (Adams et al., 2008; Brainerd
et al., 2008), adding further challenges to monitoring.
Importantly, field monitoring alone cannot provide more
than a minimum count of wolves in the population.

Wolf abundance estimates remain a key component
of monitoring and decision-making in Montana. To date,
the state wildlife management agency, Montana Fish,
Wildlife and Parks (MFWP), has relied on data from
intensive, costly field efforts. Montana’s widely distrib-
uted, low-density wolf population led MFWP to use a
Patch Occupancy Model (POM; Miller et al., 2013; Rich
et al., 2013) to estimate annual wolf and pack abun-
dances for 2007–2019, based on area occupied, mean ter-
ritory size, a territory overlap index, and mean pack size
(Inman et al., 2019). Area occupied was estimated annu-
ally with an occupancy model, using wolf detections from
hunter observations and surveys by MFWP biologists
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across a statewide observation grid of 600 km2 cells
(Inman et al., 2019; Miller et al., 2013; Rich et al., 2013).
Mean territory size was assumed to be 600 km2 based on
past work (Rich et al., 2012). An annual ad hoc overlap
index helped account for spatial overlap between neigh-
boring wolf territories, based on the mean number of
known packs per 600 km2 grid cell. Annual mean pack
size was estimated from field monitoring using visual sur-
veys, trail cameras, and public reports. Pack abundance was
then calculated as the number of territories estimated within
the area occupied (i.e., area occupied � 600 km2 � overlap
index). Abundance of wolves living in packs was estimated
as the number of packs multiplied by the average pack
size. Total wolf abundance was calculated as the abun-
dance of wolves in packs � 1.125 to account for lone and
dispersing wolves, based on scientific literature (Fuller
et al., 2003).

Whereas estimates of area occupied through POM are
reliable (Miller et al., 2013), the reliability of abundance
estimates hinge on assumptions about territory size, terri-
tory overlap, and pack size (Inman et al., 2019). Assump-
tions of a fixed territory size with minimal overlap are
simplistic; in reality, territories vary spatiotemporally
(Sells et al., 2021; Sells & Mitchell, 2020; Sells, Mitchell,
Ausband, et al., 2022; Uboni et al., 2015). Furthermore,
estimates of mean territory size were largely derived
preharvest and at a smaller population size (Rich
et al., 2012). Overall abundance estimates would be
biased with any temporal changes to mean territory size,
as would regional estimates if mean territory size varied
spatially. Variations in territory overlap would similarly
bias results. Importantly, POM’s requirement of develop-
ing annual indices for overlap and mean pack size neces-
sitated ongoing intensive monitoring to locate packs and
accurately count pack members each year.

Our objective was to integrate basic and applied
research to increase accuracy in wolf abundance estimates
while reducing reliance on intensive field monitoring.
Given a relatively large and secure wolf population size, a
more efficient approach would allow limited funding to be
used for more pressing conservation needs. We developed
an Integrated POM (iPOM) that employs mechanistic and
empirical models to incorporate current knowledge about
wolf behavior and available data. We used a mechanistic
modeling approach that tested hypotheses about how and
why wolves select particular territories and predicted terri-
torial behavior across a full range of potential present and
future conditions (Sells et al., 2021; Sells & Mitchell, 2020;
Sells, Mitchell, Ausband, et al., 2022). We used an empiri-
cal model for group size that tested hypotheses about fac-
tors influencing pack sizes and enabled predicting patterns
in pack sizes across Montana (Sells, Mitchell, Podruzny,
et al., 2022). We present here the integration of these

models. Our multimodel approach yields estimates of
annual wolf population size and characteristics based on
the influence of changing conditions on wolf behavior,
while drastically reducing costs and intensity of field moni-
toring efforts. Our approach therefore also provides a case
study of the integration of basic research and applied man-
agement to inform real-world decision-making for wildlife
conservation.

METHODS

Our multimodel approach combined an occupancy
model, a mechanistic territory model, and a group size
model, as follows (Figure 1).

Study area

Our study area was the state of Montana. Most wolf
packs have occurred in western Montana where eleva-
tions range from 554–3938 m (Foresman, 2001). In the
northwest corner of Montana, the Northern Rockies
Ecoregion (NRE) is characterized by dense forests, a
maritime-influenced climate, and rugged, mountainous
terrain (Figure 2; epa.gov). To the east, the higher-
elevation, glaciated terrain of the Canadian Rockies
Ecoregion (CRE) transitioned further east to the level
and rolling terrain of the northwestern Glaciated Plains
Ecoregion (GLPE). In southwestern Montana, the Idaho
Batholith Ecoregion (IBE) is mountainous and partially
glaciated. To the east, the Middle Rockies Ecoregion
(MRE) has rolling foothills with shrubs and grasses
along with rugged mountains with conifers and alpine
vegetation. Further east, the semiarid, rolling plains of
northwestern Great Plains Ecoregion (GRPE) is
interspersed with breaks and forested highlands, and the
xeric Wyoming Basin Ecoregion (WBE) is dominated
by grasses and shrubs. Ungulates include white-tailed
deer (Odocoileus virginianus), mule deer (Odocoileus
hemionus), elk (Cervus canadensis), and moose (Alces
alces). Statewide 10-year average abundance estimates
were ~201,000 white-tailed deer, 289,000 mule deer, and
177,000 elk (fwp.mt.gov). White-tailed deer are particu-
larly abundant in the northwest Montana, whereas elk
and mule deer are more abundant in southwestern and
central Montana. Experts estimated there were roughly
5000 moose statewide (N. DeCesare, MFWP, pers,
commun.). Other large carnivores include mountain lions
(Puma concolor), coyotes (Canis latrans), grizzly bears
(Ursus arctos), and black bears (Ursus americanus). Most
humans live in western Montana, with a statewide popu-
lation of just more than one million in 2018 (census.gov).

ECOLOGICAL APPLICATIONS 3 of 18

http://epa.gov
http://fwp.mt.gov
http://census.gov


Occupancy model

We used a dynamic false-positives occupancy model to
predict where wolves occurred in Montana each year
from 2007 to 2020 (Inman et al., 2019; Miller et al., 2011,
2013; Rich et al., 2013). Occupancy models use detection/
nondetection data and environmental predictors to esti-
mate probabilities of animal occurrence on the landscape
while accounting for imperfect detection (MacKenzie
et al., 2002). The approach has been used to monitor the
presence of many species, including wolves (Ausband
et al., 2014; Bassing et al., 2019; Rich et al., 2013; Stauffer
et al., 2021). A dynamic occupancy model enables an esti-
mation of transition probabilities for colonization and
local extinction between years to better inform occupancy
estimates and understand factors that drive changes
in occurrence over time (MacKenzie et al., 2003).

Accounting for false positives in the detection process
addresses concerns of potential misclassification (e.g., a
hunter-reported a “wolf” sighting that was a coyote).
Public survey data such as wolf sighting reports can be
integral to monitoring and occupancy estimation, but
accounting for false negatives (nondetection) and false
positives (misclassification) is needed to avoid under- or
overestimating occupancy (Miller et al., 2013). Our
approach maximized available data while properly han-
dling the potential for false reports.

Detection/nondetection data were used to generate
encounter histories of the study species within a gridded
study area (MacKenzie et al., 2002). In our case, encoun-
ter histories included observations for which wolves were
not detected (“0”), detected with uncertainty (“1”), and
detected with certainty (“2”). Following Rich et al.
(2013), we superimposed an observation “iPOM grid”

F I GURE 1 The Integrated Patch Occupancy Model (iPOM) combines three separate models into a unified framework for estimating

the numbers of packs and wolves in Montana. Graphs display statewide estimates.
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across Montana in which each grid cell represented
600 km2. To generate encounter histories, we divided the
5-week general rifle season (occurring each year around
late October through November or early December) into
1-week encounter periods and recorded whether wolves
were observed by deer or elk hunters in each iPOM grid
cell per week. To obtain wolf sighting reports, MFWP
conducted annual Hunter Harvest Surveys of a random
sample of 50,000–80,000 deer and elk hunters. Hunters
spent 1.8–2.2 million hunter days each fall pursuing deer
and elk (fwp.mt.gov), providing many observers across
Montana. Hunters were queried about dates and loca-
tions of any sightings of groups of 2–25 wolves, which we
used as “uncertain” detections of wolves to account for
potential misidentification or misreporting (Miller
et al., 2011, 2013; Rich et al., 2013).

We used the centroid locations of documented wolf
territories to represent “certain” detections of wolf packs.
Each year, MFWP wolf specialists monitored packs to
verify their presence using a combination of trail cam-
eras, visual observations, track surveys, howl surveys,

depredation locations, wolf mortality locations (i.e., wolves
removed in response to livestock depredations or
harvested by hunters/trappers), and telemetry collars.
MFWP’s decentralized management allowed each wolf
specialist to approach monitoring effort using their expert
knowledge. Wolf specialists sought to maximize efficiency
by focusing effort, for example, as conditions permitted,
based on public tips, and using prior knowledge of when
and where to search. At the end of the year, wolf special-
ists demarcated approximate territory centroids for moni-
tored packs present through autumn.

Covariates helped to account for how habitat and sam-
pling effort influenced spatial and temporal variation in
wolf pack occurrence and detection across Montana. We
included five covariates on the probability of detection,
representing sampling effort: (1) hunter days per km2 in
each hunting district (an index to spatial effort), (2) propor-
tion of hunter observations of wolves with exact location
information (a correction to account for the number of
hunter observations with coordinates that could be
assigned to specific grid cells, versus the total reported),

F I GURE 2 The study area encompassed Montana, which is characterized by ecoregions (https://www.epa.gov/eco-research/

ecoregions). Wolves are found primarily in the western ecoregions (the Northern Rockies Ecoregion [NRE], Idaho Batholith Ecoregion

[IBE], Canadian Rockies Ecoregion [CRE], and Middle Rockies Ecoregion [MRE]). In eastern Montana, only a few verified packs have been

documented in the northwestern Glaciated Plains Ecoregion (GLPE) and northwestern Great Plains Ecoregion (GRPE) between 2007 and

2020; no packs have been documented in the Wyoming Basin Ecoregion (WBE) as of 2020. Labels R1–R7 refer to Montana Fish, Wildlife

and Parks (MFWP) administrative regions.
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(3) densities of low-use forested and nonforested roads
(total km road length per km2, serving as indices of spatial
accessibility; TIGER Data, 2010, census.gov), (4) a spatial
autocovariate (sensu Augustin et al., 1996; the proportion
of neighboring cells where wolves were observed within a
radius extending to a mean dispersal distance of 100 km;
Jimenez et al., 2017), and (5) patch area sampled (because
cells overlapping national parks and tribal lands have less
hunting activity and therefore less opportunity for hunters
to see wolves). We also included patch area to account for
varying grid cell sizes, and a covariate for recency (number
of years with verified pack locations in the previous
5 years). Finally, we included covariates on the probability
of occurrence, colonization (a cell became occupied), and
local extinction (a cell became unoccupied) using a princi-
pal environmental component constructed from several
autocorrelated covariates for each grid cell: percent forest
cover (geoinfo.msl.mt.gov); elevation and slope (geoinfo.
msl.mt.gov); densities of low-use forested and nonforested
roads (TIGER Data 2010, census.gov); and human popula-
tion density (TIGER Data, 2010, census.gov). Principal
components analysis enabled finding a lower-dimensional
representation of these correlated variables (Boehmke &
Greenwell, 2020). We centered and scaled the six variables
and considered principal components (PC) with eigen-
value >1.0. The covariates in the first PC (eigenvalue 3.17)
were forest cover, slope, elevation, low-use forested roads,
and low-use nonforested roads, which describe environ-
mental covariates or covariates that provide accessibility to
wolves. The second PC (eigenvalue 1.02) represented
human population density and low-use nonforested roads.
We selected the first PC, which explained 53% of the vari-
ability in the dataset, as the principal environmental com-
ponent for the occupancy model.

We fitted the annual encounter histories and model
covariates to the dynamic false-positives occupancy
model to estimate the probability of occupancy (ψ) per
year and probabilities of false-positive detections (i.e., the
probability of incorrectly detecting wolves when the site
was unoccupied), true positive detections (the probability
of detecting wolves given the site was occupied), and cer-
tain detections (the probability a detection was classified
as certain given the site was occupied and wolves were
detected; Miller et al., 2011, 2013). Cells with known ter-
ritory centroids had a ψ closer to 1. Cells with uncertain
observation (i.e., from hunters) and no territory centroids
had lower ψ (e.g., despite some hunter observations for
eastern Montana, ψ remains very low unless a centroid
was also known). We predicted ψ for tribal lands and
national parks, where no hunter survey data were avail-
able, by extrapolating nearby hunter observations.

We used Markov chain Monte Carlo (MCMC; Brooks,
2003) methods in a Bayesian framework to fit the

occupancy model using program R 3.4.1 (R Core
Team, 2020) and package rjags (Plummer et al., 2019)
that calls on program JAGS 4.2.0 (Plummer, 2003). We
used βi ~ Normal(0, 0.001) as a weakly informative prior
on the intercept and covariates for all model parameters.
We ran three chains for 10,000 iterations without thin-
ning, after an adaptation phase of 10,000 iterations and a
burn-in of 10,000 iterations. We assessed convergence by
summarizing the Gelman–Rubin convergence statistic
(Brooks & Gelman, 1998) across MCMC output for all
grid cells, years, and parameters (n = 19,479) and spot-
checked a selection of parameters to ensure a smooth
and unimodal posterior and appropriate mixing of
chains. Additionally, we validated model results to
ensure our Bayesian occupancy model successfully
reproduced the original frequentist model by comparing
occupancy estimates from POM (Inman et al., 2019) to
those from our Bayesian model.

Mechanistic territory model

We used a recently developed mechanistic territory
model to predict territory size (Sells et al., 2021; Sells &
Mitchell, 2020; Sells, Mitchell, Ausband, et al., 2022). The
territory model was a spatially explicit, agent-based
model representing the hypothesis that wolves are
adapted to select economical territories that maximize
food benefits and minimize costs of travel, competition,
and mortality risk. Agent-based models focus on how
individual behaviors produce population-level patterns.
Through simulations in NetLogo 6.1.1 (Wilensky, 1999),
individual agents represented wolf packs and sought to
select and defend economical territories. During simula-
tions, packs were added to a gridded landscape simulated
to represent Montana. Each 1 km2 grid cell had a food
benefit based on an ungulate density index and a mea-
sure for terrain ruggedness and human density (Sells,
Mitchell, Ausband, et al., 2022). Each time a pack was
added, it selected a starting location for a territory center
and then calculated cell values around itself by
discounting each nearby cell’s food benefits by its associ-
ated costs of ownership. Food benefits accounted for
ungulate densities, based on a spatial index generated
from 10 year average densities at hunting district levels
using the best available data for deer, elk, and moose
(Sells et al., 2021; Sells, Mitchell, Ausband, et al., 2022).
Ownership costs accounted for terrain ruggedness, dis-
tance from the territory center, number of other packs
already in the area, and human density. The pack then
selected cells for a territory in order of cell value, stop-
ping once sufficient resources were obtained and the terri-
tory was optimized. After each pack selected its territory,
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neighboring packs assessed whether their territories were
still economical, as any changes in overlap with neighbor-
ing territories influenced costs of competition for those cells.
Each pack dropped less-valuable cells from its territory and
added more-valuable cells to maximize the territory’s eco-
nomic value. This cycle of territory formation and mainte-
nance continued after each new pack was added to the
landscape. Simulation output provided predictions of what
should be observed empirically if the model successfully
represented territorial behavior. After calibrating the model
using wolf location data from 2014 to 2018, the model suc-
cessfully predicted observed territory sizes across Montana
(Sells, Mitchell, Ausband, et al., 2022).

For our purposes, we used the model to simulate a
wide range of pack densities. During simulations, the
model continued adding packs until density thresholds
were reached in western Montana (comprising the NRE,
CRE, IBE, and MRE; Figure 2; Sells, Mitchell, Ausband,
et al., 2022). We set density thresholds to {0.1, 0.2, 0.3, …,
2.5} packs per 1000 km2 of area in each ecoregion
(i.e., totaling 14—329 packs in western Montana) to gen-
erate ecoregion-specific predictions of territories under
each threshold. As detailed below, this enabled us to then
select model predictions appropriate to the density condi-
tions in different areas of Montana each year. This was
important because monitoring data indicated that wolf
pack densities did not change at the same rate everywhere
in Montana through time (fwp.mt.gov/fishAndWildlife/
management/wolf/). After all packs optimized their terri-
tories and the ecoregion was saturated to the density
threshold, territory size was measured as:

Territory size¼Nselected�cellsþN travel�cells�Ncells�shared

þ
X

Ncells�apportioned

ð1Þ

where Nselected-cells was the number of selected cells,
Ntravel-cells was the number of cells crossed to reach
selected cells from a pack’s territory center, Ncells-shared

was the number of Nselected-cells and Ntravel-cells used by >1
pack, and

X
Ncells�apportioned ¼

Xn

i

1
Nowners

ð2Þ

where for each cell i � n, Nowners was the number of
owners at the cell. Territory size therefore accounted for
overlap with neighbors by apportioning each overlapping
cell by the number of owners.

We used this framework to generate predictions of
territory sizes in each ecoregion at each density thresh-
old. To allow for stochastic variation in model runs, we

repeated 50 simulation iterations at each density threshold
in western Montana, for a total of 1250 simulations. We
processed results using program R (R Core Team, 2020)
and tidyverse (Wickham et al., 2019). For each density
threshold we calculated the mean of territory sizes in each
ecoregion. Because ≤4 packs have been verified in each
eastern Montana ecoregion each year (fwp.mt.gov/
fishAndWildlife/management/wolf/), we also modeled
50 iterations at a density of 0.02 and 0.03 packs per
1000 km2 for the GLPE and GRPE, respectively.

To identify the appropriate level of competition to use
for generating predictions in the iPOM framework, we
developed a density identifier formula. During iPOM
development, we originally modeled competition by sim-
ulating territories at the set of known pack centroids each
year, and results were comparable with our final iPOM
results. To avoid rerunning simulations every year, our
density identifier formula identified the approximate
degree of competition each year. For each ecoregion and
year from 2007 to 2018, we tallied the number of verified
packs (Npacks-verified) from field monitoring and calculated
area occupied (

P
areaoccupied) as mean ψ for the

ecoregion multiplied by the area of the ecoregion
(ecoregionarea). We then fit a linear model in the form of:

Npacks�verified �
X

areaoccupied�ecoregionID ð3Þ

This formalized the strong relationship between total
area occupied and known packs per ecoregion
(R2 = 0.98; Table 1), that is, verified minimum packs.
Accordingly, the model enabled identifying the appropri-
ate density to model in each ecoregion each year
(densityidentified), solved for as:

densityidentified ¼Npacks�verified�ecoregionarea�1000 ð4Þ

Finally, we subset the mechanistic model’s results for
territorysize to the density threshold matching the
densityidentified per ecoregion, per year. This provided
territorysize-distribution, the spatially explicit distributions
of territory size estimates appropriate to local condi-
tions over time. We assigned each distribution of
values to the iPOM grid cells within that ecoregion for
that year.

The density identifier formula provides a means to
apply the mechanistic model in future years. Even if min-
imum pack counts from field monitoring become
reduced in future years through reduced monitoring
effort, the estimated area occupied in each ecoregion will
enable predicting the yearly, ecoregional-specific level of
competition. This approach also helps to account for
observational uncertainty in the number of packs
reported from field monitoring each year.
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Group size model

We used a wolf group size model (Sells, Mitchell,
Podruzny, et al., 2022) to predict pack sizes in each
600 km2 iPOM grid cell. The model, which was based on
mechanisms hypothesized to influence wolf pack size,
was developed using 14 years of wolf pack data and for-
malized as a generalized linear mixed effects model
(family = Poisson) with variables on original scales:

packsize ¼ expð1:56þ0:44�pack density�67:28

� ruggedness�0:06

�harvest intensityrestricted�0:18

�harvest intensityliberal�0:03

� control removals�0:06

�ecoregionIBEþ0:04

�ecoregionMREþ0:13

�ecoregionCREþ0:03

�ecoregionGLPEþ0:00

�ecoregionGRPEþ 1jGridIDð ÞÞ

ð5Þ

Pack density was the mean pack density in the iPOM grid
cell based on field monitoring from 2005 to 2018 (Sells,
Mitchell, Podruzny, et al., 2022). Ruggedness was the ter-
rain ruggedness in the iPOM grid cell (ranging 0–0.05
using Sappington et al., 2007’s Vector Ruggedness
Measure). Harvest intensity was categorized as “none”
when no harvest was allowed, “restricted” if 2009 and
2011 rules were followed (statewide harvest was limited

by a quota, seasons were shorter, bag limits were low,
and trapping was prohibited), and “liberal” if 2012–2021
were followed (statewide harvest quotas were removed,
seasons were longer, bag limits were higher, and trapping
was allowed; fwp.mt.gov). Control removals was the
reported number of wolves removed for depredations in
the iPOM grid cell in the calendar year. Ecoregions were
defined by the EPA (Figure 2) with a reference category
set to the NRE. GridID was the unique identifier for the
iPOM grid cell, included as a random effect to account
for repeated observations among years.

The group size model was developed using only good
quality counts (i.e., pack size counts for which wolf spe-
cialists had a high degree of confidence, n = 660 pack-
years) and intended to minimize monitoring effort (Sells,
Mitchell, Podruzny, et al., 2022). Whereas their initial
group size model relied on annual estimates of pack den-
sity based on each pack’s territory centroid, the predictive
model used long-term average pack density to eliminate
this intensive monitoring requirement. This adaptation
captured the long-term trends in pack densities and still
enabled the model to reliably estimate annual pack size
(Sells, Mitchell, Podruzny, et al., 2022).

We applied the model to each iPOM grid cell, each
year, to predict local pack size (packsize) and confidence
intervals. These estimates provided group size distribu-
tions (groupsize-distribution) for each grid cell.

Abundance estimates

We calculated annual numbers of packs and wolves for
2007–2020 by combining predictions from the three
models (Figure 1). We simulated 10,000 predictions for
each grid cell from each model (matching the length of
the MCMC iterations from the occupancy model) and
summarized results at statewide and MFWP regional
levels, as follows. (Grid cells were categorized by the
region in which the majority of their areas fell.)

Iterating across the 10,000 predictions for each grid
cell, we first calculated area occupied (areaoccupied) as:

areaoccupied ¼ψ�gridarea ð6Þ

where gridarea was area of the grid cell. We calculated the
number of estimated packs as:

Npacks ¼ areaoccupied� territorysize ð7Þ

where values for territorysize were drawn 10,000 times per
grid cell with replacement from territorysize-distribution.
Values for territorysize were therefore spatially explicit,
biologically appropriate to the local conditions each year,

TAB L E 1 Density identifier formula results. Ecoregions are

defined by the EPA (epa.gov) and refer to codes in Figure 2.

Coefficients Estimate SE Pr(>jtj)
Intercept �6.849 3.998 0.092

Areaoccupied 0.003 0.000 <0.001

IBE 16.580 9.649 0.091

MRE 10.650 6.262 0.094

NRE �10.660 6.421 0.102

GLPE 6.671 5.031 0.190

GRPE 9.815 5.623 0.086

Areaoccupied � IBE �0.003 0.003 0.294

Areaoccupied � MRE �0.001 0.000 0.012

Areaoccupied � NRE 0.000 0.000 0.416

Areaoccupied � GLPE �0.002 0.001 0.034

Areaoccupied � GRPE �0.003 0.001 <0.001

Abbreviations: GLPE, Northwestern Glaciated Plains Ecoregion; GRPE,
Northwestern Great Plains Ecoregion; IBE, Idaho Batholith Ecoregion;
MRE, Middle Rockies Ecoregion; NRE, Northern Rockies Ecoregion.
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and accounted for uncertainty. We calculated the number
of wolves as:

Nwolves ¼Npacks�packsize� lonerate ð8Þ

where values for packsize were drawn 10,000 times per
grid cell from groupsize-distribution. This provided spatially
explicit and biologically appropriate values for local con-
ditions each year while incorporating model uncertainty
about pack size. Finally, lonerate accounted for lone and
dispersing wolves. We sampled lonerate by drawing
10,000 values per grid cell from a normal distribution
assuming a mean of 1.125 and standard deviation of
0.025. This yielded a mean loner/disperser rate of 12.5%,
and 95% of values drawn were 7.6%–17.4%. We selected
these values based on studies documenting that on
average, 10%–15% of wolf populations consist of lone or
dispersing wolves (Fuller et al., 2003). This is consistent
with Idaho’s calculations for lone wolves (Idaho Depart-
ment of Fish and Game and Nez Perce Tribe, 2013) and
slightly more conservative than Minnesota’s calculations,
which add 15% (Erb et al., 2018).

We summarized results at the statewide and regional
levels for areaoccupied, territorysize, packsize, Npacks, and
Nwolves. To do so, we used the median value to generate a
point estimate, and 0.025 and 0.975 sample quantile
values to account for uncertainty (creating 95% credible
intervals, CI’s). We calculated density of packs per
1000 km2, wolves per 1000 km2, and population growth
(lambda, λ). We also calculated the human-caused

mortality rate as the annual number of human-caused
wolf mortalities divided by Nwolves. Known mortalities
were from legal harvest, control removals, vehicle/train
collisions, illegal killings, euthanasia, and other or
unknown causes, with totals ranging 100–394/year dur-
ing our study (2007–2020; mean = 277/year; fwp.mt.gov).

RESULTS

Each year (2007–2020) 50,026–82,375 hunters responded
to wolf sighting surveys. From their reported sightings,
we recorded 979–3469 detections of 2–25 wolves each
year. The percentage of hunters reporting a wolf sighting
ranged from 4.4% (2020) to 7.5% (2011).

The occupancy model converged (99.99% of Gelman–
Rubin convergence statistics were <1.1) and produced
occupancy estimates similar to the original frequentist
POM estimates (Inman et al., 2019). The model showed
that from 2007 to 2020, estimated area occupied by
wolf packs in Montana ranged from 38,719 km2

(95% CI = 33,162–44,909) in 2007 to 77,396 km2

(95% CI = 72,025–83,472) in 2012 (Table 2). The estimated
distribution of wolves from the occupancy model
closely matched the distribution of field-confirmed wolf
locations (verified pack locations and harvested wolves;
Appendix S1).

Estimated territory size varied (Figure 3). Considering
grid cells that were most likely to be occupied by packs
(ψ ≥ 0.5), territory size was estimated to be largest in the

TAB L E 2 iPOM results, 2007–2020.

Year
Area

occupied
LCI area
occupied

UCI area
occupied Packs

LCI
packs

UCI
packs Wolves

LCI
wolves

UCI
wolves

2007 38,719 33,162 44,909 91 76 108 654 545 773

2008 49,409 43,922 55,658 119 103 136 847 733 972

2009 61,284 55,507 67,562 152 136 172 1021 908 1151

2010 63,615 58,356 69,367 161 144 180 1144 1025 1275

2011 71,598 66,472 77,317 187 170 206 1252 1136 1382

2012 77,396 72,025 83,472 204 186 224 1199 1092 1316

2013 76,931 71,688 82,796 204 186 224 1204 1096 1323

2014 71,805 66,680 77,413 190 172 209 1127 1020 1242

2015 74,377 69,514 79,661 199 182 218 1184 1078 1300

2016 70,263 65,577 75,293 188 171 207 1119 1017 1234

2017 69,084 64,731 73,984 185 169 203 1107 1008 1223

2018 71,099 66,517 76,027 192 175 211 1147 1042 1262

2019 71,523 67,021 76,426 193 176 211 1153 1049 1266

2020 73,463 68,754 78,958 197 180 217 1177 1069 1290

Abbreviations: LCI, lower credible interval; UCI, upper credible interval (95%).
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Middle Rockies (the MRE, southwest MT) and second
largest in the Canadian Rockies (the CRE, including
Glacier National Park and the Bob Marshall Wilderness),
followed by the Northern Rockies (the NRE, northwest
MT) and the Idaho Batholith (the IBE, the Bitterroot
area). Territory size was greatest in 2007 and dropped
thereafter, except in the IBE where territory size
remained stable.

Estimated pack size also varied (Figure 3). Consider-
ing grid cells most likely occupied by packs, mean pack
size was estimated to be similar across ecoregions
(an approximate difference of <1 wolf per pack in most
years). We estimated pack size to generally be slightly

larger than average in the NRE, approximately equal to
the average in the CRE and MRE, and slightly smaller
than average in the IBE. Pack sizes were larger in the ear-
lier years (prior to harvest) and then declined by approxi-
mately one wolf per pack, on average.

Estimated numbers of packs and wolves varied
through time (Figure 4; Table 2). The population was
estimated to have been smallest in the first year of analy-
sis (2007), with 91 packs (95% CI = 76–108) and
654 wolves (95% CI = 545–773). Total wolf numbers
peaked in 2011 with 187 packs (95% CI = 170–206) and
1252 wolves (95% CI = 1136–1382). This peak coincided
with the first years of harvest management in Montana,

F I GURE 3 Estimated territory size and pack size in western Montana, by year and ecoregion, for cells with ψ ≥ 0.5 (i.e., having higher

likelihood of being occupied). Dashed lines represent the means across ecoregions, and ribbons indicate 95% credible intervals. (Eastern

Montana ecoregions are omitted here because they had very few packs each year.) Triangles indicate mean observed territory and pack sizes

per year, per ecoregion. Observations were relatively limited; within the Northern Rockies Ecoregion (NRE), Canadian Rockies Ecoregion

(CRE), Idaho Batholith Ecoregion (IBE), and Middle Rockies Ecoregion (MRE), respectively, territory sizes were based on a mean of 1.7, 2.3,

1.25, and 2.2 packs per year after omitting two outlier packs with territories >1800 km2, and pack sizes were based on a mean of 15, 9, 4, and

20 packs with good quality counts annually. However, no clear bias or trends over time are evident in observed versus predicted territory or

pack sizes, with the possible exception of some territory estimates for the CRE. Several packs that increased the mean observed territory

sizes in the CRE in these years reduced their space use by �50% the following years, and the CRE was estimated to contain ≤9% of total

packs within Montana.
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after which the population declined by 6.0% in total wolf
abundance between 2011 and 2020. These estimates were
consistently greater than numbers reported from moni-
toring or POM (Appendix S1: Figure S1).

Population growth rate was initially >1.0 through
2010 or 2011 in each region and then alternated from
slightly positive and slightly negative during each year of
harvest (Figure 5). From 2016 to 2020, however, the pop-
ulation appears to have become relatively stabilized with
an average of 191 packs and 1141 wolves per year. This

was despite a human-caused mortality rate estimated at
30.4% per year on average over this same period
(Figure 5).

The estimated numbers of packs and wolves varied
spatially. Pack and wolf abundances were consistently
greater in the MFWP Region 1 (which contains most of
the NRE and CRE; Figure 2). Annually from 2007 to
2020, 37%–42% of packs in Montana were found in
Region 1, which also contained an average of 41% of the
wolf population (Figure 6). The next most populous area

F I GURE 4 Estimated abundances and densities of packs and wolves statewide and per region, 2007–2020. Ribbons indicate 95%
credible intervals.
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F I GURE 5 Estimated population growth rate per region (lambda) and human-caused mortality rate (number of human-caused

mortalities/total abundance) per year. Ribbons indicate 95% credible intervals.

F I GURE 6 Proportion of packs estimated per Montana Fish, Wildlife and Parks (MFWP) region, and total mean % of wolves per region

(annual % of wolves were nearly identical to that of packs).
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was Region 2 (encompassing parts of the IBE, MRE and
NRE), with 24%–26% of total packs and 26% of the wolf
population. In contrast, Region 3 (comprised mostly by
the MRE) contained 19%–25% of packs and 20% of the
wolf population. Regions 4–7 (containing mostly the east-
ern Montana ecoregions) each contained only ≤1%–9% of
packs and 1%–7% of wolves. As the abundance of packs
and wolves changed through time (Figure 4), the propor-
tion of packs and wolves in each region stayed relatively
consistent, with slight increases in Regions 1 and 4, and
slight declines in Regions 3 and 5 (Figure 6).

Wolf densities varied over space and time (Figure 4;
Appendix S1). Estimated densities were greatest in
MFWP Region 1 (ranging 6.42–13.31 wolves per
1000 km2 from 2007 to 2020), followed by Region 2
(6.62–12.44) and Region 3 (3.24–5.07). Regions 4–7 had
≤1.41 wolves per 1000 km2. Regions 1 and 2 saw the
greatest increase in densities from 2007 through the pop-
ulation peak, with a smaller change in density in Region
3 and largely consistent densities in Regions 4–7. Maps of
pack and wolf densities demonstrate close alignment
between known packs, locations of wolf harvests, and
predictions from iPOM (Appendix S1).

DISCUSSION

We demonstrate the integration of basic and applied
research to meet management needs by developing a
multimodel approach to estimate wolf abundance in
Montana. This approach addresses important assump-
tions of existing methods for estimating wolf abundance
by incorporating an occupancy model (Inman
et al., 2019; Miller et al., 2013; Rich et al., 2013) and
biologically based models for territory and pack size
(Sells et al., 2021; Sells, Mitchell, Ausband, et al., 2022;
Sells, Mitchell, Podruzny, et al., 2022). Our approach
reduces monitoring needs while providing more accu-
rate abundance estimates founded on the biology and
behavior of wolves. This is beneficial and timely given
the continued expansion of wolf populations across the
American west, liberalization of harvest management
in the Rocky Mountains, and limited monitoring
budgets.

Our multimodel approach provides a unique, biologi-
cally based means for estimating abundance of an elusive
large carnivore. As expected given that monitoring pro-
vided only minimum counts, statewide estimates of
abundance from iPOM were consistently greater than
numbers reported from monitoring (Appendix S1:
Figure S1). iPOM estimates were similarly greater than
previous POM estimates, which assumed territory size
was constant over space and time. This assumption was

clearly violated (Figure 3). Empirical data alone show
that wolf territories have not averaged 600 km2 in recent
years (Sells et al., 2021), demonstrating the bias of
approaches such as POM if the territory size estimates
mismatch the reality. POM also incorporated an overlap
index in an attempt to account for changing spatial
dynamics over time, but this ad hoc approach was not
tested or biologically based and its effects on accuracy
were unknown. Additionally, POM could not accurately
estimate regional abundances due to the lack of spatio-
temporal estimates of territory and pack size
(Appendix S1: Figure S1).

By integrating basic and applied research, our iPOM
approach improves accuracy in estimates of wolf abun-
dance. The mechanistic territory model maximizes pre-
dictive ability across time and space (Aarts et al., 2008;
Sells et al., 2018; Sells, Mitchell, Ausband, et al., 2022)
and enables predicting territorial behavior across chang-
ing environmental and social conditions. Changing levels
of ungulate densities or intrapack competition are impor-
tant drivers of territory size (Sells et al., 2021; Sells &
Mitchell, 2020; Sells, Mitchell, Ausband, et al., 2022), and
our approach provided predictions across a range of con-
ditions, which can be used in future years as conditions
change.

Importantly, our iPOM approach reduces field-based
monitoring requirements. Annual hunter surveys about
wolf sightings are part of a larger program by MFWP to
survey hunters, and wolf-related questions add minimal
extra effort for MFWP staff. Wolf specialists will continue
to monitor packs to document known detections each
year, but this can rely on established methods such as
well placed remote cameras, visits to past den sites, howl
surveys, or drone flights to document definitive wolf pres-
ence through autumn. Several decades of wolf monitor-
ing effort and close communication with the local public
provide wolf specialists with a wealth of knowledge of
when and where to most efficiently invest effort to detect
packs. Because the original assumption of 600 km2 terri-
tory sizes biased POM estimates, without our mechanistic
territory model the MFWP would need to collar many
wolves to continuously estimate territory size for POM
across space and time. This task was clearly not feasible
as wolves became more difficult to trap, and collars
yielded less data due to failures and mortalities (Sells
et al., 2021). This field-intensive approach would also fail
to explain why spatial requirements of packs vary. By
contrast, our territory model required substantial up-
front investment, but now provides a simple means to
calibrate territory size estimates based on the biology and
behavior of wolves. The pack size model was similarly
designed to significantly reduce monitoring effort and
improve the accuracy of abundance estimates from iPOM
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(Sells, Mitchell, Podruzny, et al., 2022). Annual monitor-
ing to collect data on pack sizes is no longer required
unless future conditions (e.g., intensity of harvest, disease
events, etc.) shift beyond conditions experienced within
our 14-year dataset, in which case the effects on pack size
will be unknown. For example, increased liberalization
of harvest methods since 2012 and, especially in 2022,
would necessitate re-calibration of the model if total har-
vest increases substantially beyond that observed in pre-
vious years. However, the most recent (2021–2022
season) liberalization of wolf harvest regulations have
not resulted in an increase in wolf harvest compared with
prior years (fwp.mt.gov/hunt/regulations/wolf), indicat-
ing that the existing model remains useful. Regardless of
temporary increases in monitoring efforts to re-calibrate
the pack size model as needed in future years, its exis-
tence provides a substantial saving in monitoring require-
ments by negating the need to continuously monitor
sizes of as many packs as possible each year.

Incorporation of biologically appropriate estimates of
territory size at both statewide and regional spatial scales
allows for regional scale estimates of the number of packs
and wolves. This will enable managers to make decisions
using estimates for regional populations. Regional esti-
mates from iPOM demonstrate large variations in pack
and wolf abundances across space and time (Figure 4).
These estimates accord with expert knowledge of MFWP
wolf specialists familiar with local pack dynamics. They
also reveal how many packs may have been unverified
each year. Generally, iPOM estimated that only a small
number of additional packs had been omitted from veri-
fied minimums in each region (Appendix S1: Figure S1).
The largest differences occurred in Region 1 in recent
years; which was attributed in part to a change in field
personnel (Coltrane et al., 2015) and consistent with
recent public and field staff input.

The extent to which the population’s stabilization
over recent years (Figure 1) represents a response to
density-dependent factors versus human-caused mortal-
ity (particularly hunting, trapping, and depredation
removals) is uncertain. However, our territory model
demonstrated that increasing levels of competition gener-
ally result in territory compression as desirable areas are
competed for and claimed (Sells et al., 2021; Sells,
Mitchell, Ausband, et al., 2022). Accordingly, the spatial
distribution of territories may not appreciably change
even as territory dynamics fluctuate within. Our group
size model also demonstrated evidence of large packs in
areas of greater pack densities, suggesting less dispersal
in response (Sells, Mitchell, Podruzny, et al., 2022). Both
features point to density dependence, but effects of
human-caused mortalities cannot be ruled out, particu-
larly given that the area occupied largely plateaued

coincident with increased intensity of harvest. Recent
human-caused mortality rates (Figure 5) are approxi-
mately at the level that has led to population stability
in other, smaller areas (Adams et al., 2008; Fuller
et al., 2003). It also remains likely that human intoler-
ance has prevented the successful long-term expansion of
wolves into central and eastern Montana, as new packs
may be removed, for example, through harvest or live-
stock depredation control events. Future monitoring may
help to reduce uncertainty about the extent to which den-
sity dependence or human-caused mortality is limiting
wolf population growth in Montana, especially if recent
liberalization of harvest regulations results in additional
mortality.

Researchers recently used simulations to identify the
conditions likely to most bias estimates of abundance
using a POM approach without spatially explicit, biologi-
cally based estimates for territory and pack sizes (Stauffer
et al., 2021). Occupancy models assume that packs do not
overlap multiple grid cells, and any movement into the
cell is equal to movement out of the cell. Stauffer et al.
(2021) found that abundance estimates were most biased
when using a static occupancy model for a small popula-
tion with small territories and a detection grid composed
of large grid cells (where territories were assumed to be
100 km2, grid cells were 324 km2, and population size
was 100 wolves). Abundance estimates were conversely
the least biased for larger populations of wolves in larger
territories, defined as 324 km2. Based on these results,
POM estimates should have comparatively low bias due
to use of a dynamic false-positives occupancy model with
large grid cells (600 km2), large territories (600 km2), and
a population far exceeding 100 individuals. Estimates
generated from iPOM further reduced the potential for
bias by incorporating spatial and temporal variation in
territory and pack sizes. In the future, iPOM could be
modified to include a new detection grid with cells that
vary in size according to more localized territory sizes,
which would probably further minimize bias by better
matching grid cell and territory size estimates (Stauffer
et al., 2021).

Although wolf conservation advocates have expressed
concerns that hunter surveys could bias occupancy esti-
mates given sufficient mistaken or falsified reports, for
several reasons there is little evidence that this occurs or
would be likely to affect results. First, the false-positive
nature of the model accounts for these possibilities by
explicitly treating hunter observations as uncertain detec-
tions. Furthermore, 92.5%–95.6% of hunters surveyed
each year did not report seeing wolves, and suspect
reports (e.g., >25 wolves sighted at one time) were rare
and automatically omitted. Lone wolves and potential
misidentifications were also automatically excluded
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(sightings of <2 wolves). Sightings also aligned strongly
with the distribution of wolves known from agency moni-
toring, with the exception of sporadic reports in eastern
Montana (Appendix S1). These reports neither drive up
the estimates of occupancy nor affect overall abundance
estimates in appreciable ways, further demonstrating the
inability of hunter reports to singly influence the esti-
mates of abundance.

Consistent bias in estimated territory or pack sizes
would bias results. If territory size estimates were biased
low or pack size estimates were biased high, the overall
population estimate would be biased high. Unless terri-
tory or pack size estimates were consistently biased in the
same direction across large spatial extents, however,
regional- and population-level biases are likely to par-
tially or fully wash out (as some areas would be slightly
overestimated and others underestimated). Although
challenging to compare due to limited observation data
in each ecoregion per year, no bias in observed versus
predicted territory or pack sizes across ecoregions was
clearly evident (Figure 3). A possible exception occurred
in the CRE, where territories were observed to be larger
in some years than estimated by the territory model. Sev-
eral packs that increased the mean observed territory
sizes in the CRE in these years reduced their space use by
~50% the following years, and the CRE was estimated to
contain ≤9% of total packs within Montana (Figure 6).
Accordingly, any change to the territory size inputs for
this ecoregion would have limited overall effect on abun-
dance estimates. Altogether, iPOM’s incorporation of spa-
tially explicit estimates for territory and pack size
therefore has a strong advantage over POM. By assuming
a single estimate for territory and pack size was accurate
each year, POM had more potential to generate biased
estimates if these components were inaccurately esti-
mated (e.g., Stauffer et al., 2021). iPOM also carries
uncertainty in estimates across the full set of calculations
to provide credible intervals that account for uncertainty
from each component (occupancy, territory size, pack
size, and lone wolf rate).

Our approach is unique among the various
approaches taken globally to monitor wolves and esti-
mate their abundance. Like Montana in early phases of
recovery, intensive efforts may be used to monitor as
many wolves as possible, particularly where wolf
populations remain relatively small (e.g., California,
Oregon, and Washington; wildlife.ca.gov, dfw.state.or.us,
wdfw.wa.gov). Many management and research groups
rely on models designed to estimate population parame-
ters from wolf monitoring data. In Finland, for example,
winter track surveys were used to estimate the number of
litters in an effort to track population growth (Kojola
et al., 2014). This estimation technique was effective in

only some regions and involved intensive effort (over a
2 decade period, 200,000 km of transects surveyed pri-
marily by ski to obtain <900 wolf track observations).
Scandinavian countries have also used individual-based
models with highly informative priors to estimate popula-
tion size (Chapron et al., 2016). These priors were
uniquely available for one of the most intensively studied
populations of large carnivores in the world, and the
model assumed that all pairs, packs, and reproductions
were detected. Open population spatial capture–
recapture models have also been used to estimate recent
and future abundance of wolves in Scandinavia (Bischof
et al., 2020). These approaches appear to be effective
when extensive genetic datasets are available. In less well
studied populations, genetic spatial capture–recapture
models may be unable to produce estimates for some
time periods, despite intensive field effort (e.g., as demon-
strated for cougars in Idaho; Loonam et al., 2020).
Loonam et al. (2020) concluded that these models may be
most conducive in small areas with concentrated field
effort and therefore not appropriate for statewide moni-
toring, such as in Montana. An integrated population
model to estimate wolf abundance in Idaho was recently
developed using an extensive dataset (including 10 years
of data with >1300 pack counts and nearly 200 GPS col-
lars; Horne et al., 2019). Time- and space-to-event model-
ing with cameras have received great interest in recent
years and can effectively estimate abundance and densi-
ties of populations for some large mammalian species
(Loonam et al., 2020; Moeller et al., 2018). Using these
approaches over large areas would be costly and field
intensive, and the approaches are sensitive to camera
placement and rely on accurate estimates of animal
movement speeds. Idaho (Ausband et al., 2014), south-
western Alberta (Bassing et al., 2019), and Wisconsin
(Stauffer et al., 2021; Wiedenhoeft et al., 2020) have
also used POM-based estimation approaches. These
approaches did not incorporate spatially explicit, biologi-
cally based models for territory and pack size. As demon-
strated, integrating these types of models is important for
estimating population size from estimates of area
occupied.

iPOM meets the broadscale monitoring needs of a
large wolf population while integrating wolf biology and
reducing the amount of detailed monitoring data
required by many previous estimation methods. It has
already demonstrated its effectiveness in revealing
changes in population size (Figure 4). Although recent
developments in mark–recapture methods offer alterna-
tive approaches to estimating population size, applying
these methods to elusive large carnivores over vast areas
is not feasible with current technology. Intensive mark-
ing and counting over multiple years may provide an
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estimate of population size over smaller areas. However,
these methods fail to generate estimates once intensive
field effort drops. Mark–recapture or other modeling
approaches may become feasible in future years if the
wolf population substantially declines. The Montana
Gray Wolf Conservation and Management Plan specifies
that wolf population monitoring will be more limited
when the population contains more than 15 breeding
pairs (defined as packs that produce at least two young
that survive to 31 December), and that monitoring will
be enhanced when the population is between 10–15
breeding pairs (Montana Fish, Wildlife and Parks, 2003).
We developed iPOM to fulfill the need for monitoring
methods for the current large, well distributed popula-
tion. Monitoring methods that are more effective for
smaller populations distributed over smaller areas will
become more appropriate if the population approaches,
or declines below, the 15 breeding pair threshold.
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