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Abstract
1.	 Hunter	 populations	 can	 provide	 a	 tremendous	 workforce	 of	 citizen	 scientists	
afield	when	queried	for	data.	Soliciting	incidental	observations	of	non-	target	spe-
cies from hunters may be a relatively important but untapped population moni-
toring resource in systems where hunter effort is common and widespread.

2. During 2012– 2016, we queried hunters of deer and elk for observations of a 
non-	target	species,	moose,	across	 their	 statewide	distribution	 in	Montana.	We	
analysed data in an abundance- detection framework with n- mixture models and 
evaluated the effects of covariates such as hunter effort, survey response totals, 
weekly session and forest cover on detection probability before using models to 
predict moose abundance.

3.	 We	collected	an	average	of	3409	moose	observations	per	year	and	our	best	n-	
mixture model included effects of week, year (number of responses), site (pro-
portionate forest cover) and site- year (hunter effort) on detection probability, as 
well as an effect of site (area of forest and shrub habitat) on abundance. Density 
estimates averaged 0.099 (range 0.002– 0.439) moose/km2 across sites or 0.200 
(range 0.017– 0.799) moose/km2 when limited to density within shrub and for-
est	cover	specifically.	Statewide	abundance	totals	across	the	5-	year	study	period	
averaged	10,755	(range	9925–	11,620).	Goodness-	of-	fit	tests	showed	that	models	
were identifiable and overdispersion of the data was low, yet some caution is still 
warranted when extrapolating these data to abundance estimates.

4. Querying a sample of deer- elk hunters for observations of a non- target species 
yielded thousands of spatially georeferenced detections per year and analysis in a 
temporally structured framework yielded estimates of both detection probability 
and	abundance.	Abundance	estimates	at	this	scale	are	unprecedented	for	moose	
in Montana and are encouraging for long- term monitoring over space and time.
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1  |  INTRODUC TION

Science-	based	 monitoring	 of	 population	 abundance	 and	 trend	 is	
fundamental to conservation and management of wildlife. For many 
species,	 such	 monitoring	 includes	 components	 of	 citizen	 science,	
wherein	 public	 citizens	 are	 recruited	 as	 collectors	 of	 data	 (Brown	
&	Williams,	 2019). Long- standing examples of wildlife monitoring 
founded	upon	citizen	science	include	volunteer	surveys	such	as	the	
U.S.	Christmas	Bird	count	(Dunn	et	al.,	2005), road- side amphibian 
surveys	 (Sterrett	 et	 al.,	2019) or other efforts of organised public 
involvement towards a given data need. Compared to this active 
investment	 of	 effort,	 other	 more	 passive	 examples	 of	 citizen	 sci-
ence include the annual solicitation of harvest and observation data 
from hunters across many jurisdictions globally (Cretois et al., 2020; 
LaBonte	 &	 Kilpatrick,	 2017).	 Hunter	 populations	 can	 provide	 a	
tremendous	 workforce	 of	 citizen	 scientists	 afield	 when	 queried	
for data. Furthermore, hunter observations of wildlife have been 
used	to	monitor	species	targeted	by	hunters	(Haskell,	2011; Tallian 
et al., 2021; Ueno et al., 2014) as well as other species encountered 
incidentally while hunting (Mahard et al., 2016; Rich et al., 2013).

Through their cumulative numbers and time spent afield, hunters 
represent an impressive workforce of observers deployed to the nat-
ural	landscapes	occupied	by	wildlife.	A	review	of	hunting	statistics	
within	the	contiguous	United	States	estimated	that	deer	(Odocoileus 
spp.) hunters alone spend nearly 168 million hunter- days afield each 
year	(QDMA	[Quality	Deer	Management	Association],	2019).	Spread	
evenly across the 7.7 million km2	 land	area	of	the	contiguous	U.	S.	
this translates to an average of almost 22 hunter- days per km2 of 
land.	Because	hunters	are	not	evenly	distributed	across	the	country,	
some regions, states, and areas certainly have even denser hunter 
effort.	Hunting	effort	 is	also	typically	concentrated	within	specific	
administratively mandated seasons, which has advantages when 
seeking to sample closed populations of non- target species.

Low costs and high quantities of data can be enticing benefits of 
citizen	science,	yet	careful	attention	to	elements	of	design	and	sam-
pling are required to minimise effects of bias upon statistical analy-
ses	and	interpretations	(Brown	&	Williams,	2019; Isaac et al., 2014; 
Steger	et	al.,	2017).	Such	biases	can	occur	where	sampling	(i.e.	the	
detection process) is uneven over space or time or among taxa, 
which	 is	 very	 often	 the	 case	 with	 opportunistic	 data	 (Geldmann	
et al., 2016;	Steger	et	al.,	2017), including data collected by hunters 
(Bauder	et	al.,	2021; Mysterud et al., 2020). Fortunately, occupancy- 
detection methods of design and analysis offer one solution to 
such variation by explicitly modelling the detection process (Isaac 
et al., 2014).	Where	replicates	of	data	collection	are	possible	within	
a period of closure, these approaches have been successfully applied 
for	monitoring	of	presence–	absence	or	distribution	with	citizen	sci-
ence data (Crum et al., 2017;	 van	Strien	et	al.,	2013).	Abundance-	
detection extensions of this approach, such as the n- mixture model 
for count data (Royle, 2004), offer further potential for monitoring 
of abundance while accounting for heterogeneity in the detection 
process	 common	 to	 citizen	 science	 data	 (Belt	 &	 Krausman,	2012; 
Brommer	et	al.,	2017).

Large or charismatic species may be particularly amenable 
to	 citizen	 science	 approaches	 (Steger	 et	 al.,	 2017). For example, 
moose (Alces alces) have been a common target of such monitor-
ing	across	 the	boreal	 forests	of	 their	Holarctic	 range.	A	 review	of	
North	American	jurisdictions	showed	80%	(12	of	15)	of	states	and	
provinces incorporated visual observations of moose by hunters 
into monitoring programs (Crichton, 1993).	Similarly,	hunter	obser-
vations are a foundational component of moose monitoring in some 
European	 countries,	 including	 Norway	 (Solberg	 &	 Sæther,	 1999; 
Ueno et al., 2014)	 and	 Sweden	 (Ericsson	 &	 Wallin,	 1999; Tallian 
et al., 2021).	However	in	many	southern	jurisdictions,	moose	hunt-
ing opportunity is limited or non- existent, and data from hunters 
specifically targeting moose are sparse (DeCesare et al., 2016). In 
these scenarios, moose are a non- target species that may be inci-
dentally observed by a larger workforce of hunters targeting more 
common species such as deer (Crum et al., 2017). Thus, despite being 
commonly targeted by hunters in some jurisdictions where they are 
more numerous (Ueno et al., 2014), moose in lower density popula-
tions provide a useful case study for monitoring non- target species 
via opportunistic observations from hunters.

We	 applied	 abundance-	detection	 methods	 to	 hunter	 obser-
vation data collected for moose in Montana. Traditional ungulate 
monitoring in Montana occurs via aerial surveys and hunter harvest 
statistics	(e.g.	Paterson	et	al.,	2019). Moose in this environment are 
widespread but locally occur at low densities with very limited hunter 
opportunity, do not aggregate to a high degree in this environment 
and often occupy habitats obscured from above by dense vegeta-
tion, which collectively cause monitoring via aerial survey or harvest 
statistics to be untenable and unsatisfactory (DeCesare et al., 2016). 
While	 there	 were	 only	 365	 licensed	 moose	 hunters	 annually	 in	
Montana during our study period on average, there were an aver-
age of 150,959 and 109,111 hunters of deer and elk, respectively, 
totaling over two million hunter- days per year. Thus, we targeted 
this larger pool of deer and elk hunters for observations of moose, 
a	non-	target	species,	during	weekly	sessions	for	each	of	5 years	and	
analysed	data	with	n-	mixture	models.	We	evaluated	the	effects	of	
hunter effort, survey responses, survey week and forest cover on 
detection probability and the effect of habitat area on abundance. 
Lastly, we made predictions of abundance both per site and scaled 
up to statewide abundance to evaluate the efficacy of this approach 
for broad- scale monitoring.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

We	collected	moose	observation	data	 across	 the	 entire	 state	of	
Montana where state- administered deer and elk hunting occurred. 
We	 then	 restricted	 our	 analyses	 to	 observation	 data	 collected	
within	79	state	administered	moose	hunting	districts	(HDs),	which	
represented	202,474 km2	(53%)	of	Montana's	land	area	(Figure 1). 
Ecoregions	 in	 Montana	 include	 the	 North	 and	 South	 Central	
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Rockies Forests where the Rocky Mountains span the western 
portion	of	the	state,	the	Montana	Valley	and	Foothill	Grasslands	
along valley floors between mountain ranges, and the Northern 
Short	Grasslands	 across	 the	 central	 and	 eastern	 portions	 of	 the	
state (Olson et al., 2001).	Elevation	in	the	study	area	ranged	from	
554–	3882 m	 and	 annual	 precipitation	 from	 16	 to	 253 cm.	Mean	
January	temperatures	ranged	from	−14°C	to	−2°C	and	mean	July	
temperatures	from	6	to	23°C.

White-	tailed	deer	 (Odocoileus virginianus), mule deer (O. hemio-
nus) and elk (Cervus canadensis) are more abundant than moose in 
this	study	area.	State-	administered	hunting	of	deer	and	elk	during	
the study period occurred during a 5- week general season across 
most	 of	 the	 state.	 Specifically,	 this	 season	 began	 in	 late	October	
of each year (start date range: 20 October– 26 October), lasted for 
37 days	and	ended	 in	 late	November	or	early	December	 (end	date	
range:	25	November–	1	December).	A	general	deer	hunting	 licence	
was available over the counter to residents and allowed rifle hunting 
of	white-	tailed	 deer	 in	 97%	of	 hunting	 districts	 and	 of	mule	 deer	
in	79%	of	districts	in	2016.	A	separate	general	elk	licence	was	also	
available over the counter to residents and allowed rifle hunting of 
elk	in	85%	of	districts	 in	2016.	General	 licence	hunting	opportuni-
ties	yielded	79%	of	deer	harvest	and	68%	of	elk	harvest	in	2016.	In	
addition to general licences, additional hunting opportunity in many 
areas was available through lottery of permits (conferring additional 
permitted uses of general licences) and antlerless licences via special 
drawings.

2.2  |  Data collection

2.2.1  | Moose	observation	data

Following methods first established for monitoring wolves within 
Montana (Rich et al., 2013), we used annual phone surveys to query 
hunters for observations of moose following five hunting seasons of 
2012– 2016. During these years there were an average of 165,594 
(range 161,394– 171,604) resident hunters with deer and/or elk  
licences. For this survey we drew a random sample of licence hold-
ers,	averaging	50,512	 (31%)	hunters	per	year,	 to	 target	 for	observa-
tions	 of	 moose.	 We	 added	 questions	 to	 an	 existing	 phone	 survey	
effort designed for estimating statewide deer and elk hunter harvest in 
Montana to collect ancillary information regarding moose observations 
while hunting these more abundant species (Lukacs et al., 2011).	We	
asked a sampled deer and elk hunters: (a) whether or not they saw any 
moose while deer or elk hunting, (b) if yes, in what district and location 
(relative to landmarks, property ownership, or names of topographic or 
hydrologic features), (c) during which week of the 5- week season and 
(d) how many animals were seen in that location. Distinct observations, 
as denoted by different locations or time periods, were entered sepa-
rately	but	a	single	observation	could	include	more	than	one	moose.	We	
then digitised the locations of moose observations using information 
provided and tallied them by week within the boundaries of 79 moose- 
specific	HDs.	While	data	were	collected	by	deer	and	elk	hunters	whose	
hunting behaviour was regulated within deer and elk hunting districts, 

F I G U R E  1 The	Montana	study	area	boundary,	as	delineated	by	79	moose	hunting	districts	administered	by	Montana	Fish,	Wildlife	and	
Parks,	other	lands	outside	of	moose	hunting	districts	and	hunter	observations	of	moose	collected	during	the	five-	year	study	period,	2012–	
2016.
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we later summarised these observations with respect to moose hunt-
ing districts because they are spatial units ultimately of interest for 
moose	population	monitoring	and	management.	Public	hunting	of	deer	
and elk was regulated under the auspices of legal hunting and trapping 
seasons	defined	by	the	Montana	Fish	and	Wildlife	Commission,	under	
the	authority	granted	to	them	in	statute	MCA	87-	1-	301.

Hunter	observations	may	suffer	 from	a	problematic	 lack	of	 in-
dependence when multiple observations can be collected across 
hunters	for	the	same	individual	animal.	We	expected	such	repeated	
counts were present in our dataset, and we used a sequence of spa-
tial analyses to consolidate observations that overlapped in space 
and	 time.	 First,	 we	 used	 global	 positioning	 system	 (GPS)	 teleme-
try data collected from 93 adult female moose in three Montana 
study areas during 2014– 2020 to assess the weekly space use of 
moose during the autumn study period. For these analyses, we as-
sumed movement data collected from adult female moose would 
adequately describe weekly space use for both males and females. 
Details of animal capture and handling for those studies are pre-
sented in Newby and DeCesare (2020).	We	subsampled	GPS	data	
to daily locations during each 5- week hunting season and estimated 
the	pairwise	Euclidean	distance	between	daily	locations	within	each	
of	1016	moose-	weeks.	We	then	divided	pairwise	distances	in	half	to	
approximate circular radii extending from each location and used a 
histogram of the maximum pairwise radii per moose- week to esti-
mate the weekly distribution of potential moose space use surround-
ing a given location. This distribution of weekly space use was then 
applied to convert point locations of observations into probability 
density	functions.	We	buffered	observations	with	concentric	circles	
corresponding in radii to the breaks of the distance histogram, with 
probability density calculated according to the proportion of loca-
tions within each interval and the corresponding concentric circle 
area. For each observation, the sum of density*area values across 
all	 surrounding	buffers	 equaled	1.	We	 then	 consolidated	each	 set	
of buffers surrounding observations within the same year and week 
into	 a	 raster	 layer.	 Areas	 where	 probability	 density	 buffers	 over-
lapped represented places where observations may have occurred 
within the space use of the same moose. In those overlapping areas, 
we used a single value of the maximum probability density value 
across all buffers to characterise the density per raster pixel. This 
consolidated sets of overlapping observations relative to the degree 
of overlap, such that completely overlapping observations were 
reduced to be equivalent to a single one, whereas completely non- 
overlapping	observations	remained	independent.	We	then	summed	
density buffers per raster within each hunting district to estimate a 
single count of spatially independent moose observations per week 
and year of sampling.

2.2.2  |  Environmental	predictors	of	
detection and abundance

We	were	interested	in	monitoring	moose	abundance	per	HD	while	ac-
counting for spatio- temporal heterogeneity in detection probability. 

We	evaluated	how	detection	probability	varied	according	to	four	co-
variates, with one covariate hypothesised to vary by each category 
of	site	(i.e.	HD),	year,	site-	year	and	week.	The	site	covariate	with	hy-
pothesised effects on detection was the proportionate forest cover 
of	 sites	 (using	Montana	Land	Cover	Framework;	MNHP	 [Montana	
Natural	Heritage	Program],	2017).	We	hypothesised	yearly	effects	
on detection according to the number of respondents to questions 
about moose observations during yearly hunter phone surveys, 
2012– 2016. The site- year covariate with hypothesised effects on 
detection was the estimated hunter effort of deer and elk hunters 
during the general, 5- week rifle season, in hunter- days per km2. 
Hunter	effort	was	estimated	distinctly	for	deer	hunters	and	elk	hunt-
ers for each site- year according to the mean relationships between 
hunter harvest (estimated by phone survey every year) and hunter 
effort (estimated by phone survey in alternating years) per site. 
Because	the	proportions	of	hunters	queried	for	moose	observations	
varied between deer and elk hunters by year, we calculated total 
effort estimates per site by log- transforming the combined effort of 
both deer and elk hunters weighted by the proportion of respond-
ents queried for moose observations each year. The week- level co-
variate was simply the effect of week itself on detection, treated 
as	categorical	variables	for	hunting	season	weeks	1–	5.	We	treated	
week as a categorical variable to account for heterogeneity in the 
amount of hunting effort spent in the field each week, as dictated by 
weekly variation in weather and hunter behaviour.

We	evaluated	the	effect	of	area	on	abundance	within	each	site,	
including log- transformed metrics of total area, shrub area and forest 
area.	Habitats	used	by	moose	in	Montana	include	a	variety	of	forest	
and shrubland vegetative communities (DeCesare et al., 2014).	We	
simplified land cover data to include binary representations of forest 
habitats and shrubland habitats and evaluated the log- transformed 
area of each to inform models of moose abundance.

2.3  |  Statistical analysis

We	analysed	counts	of	moose	per	site	using	n-	mixture	models	to	si-
multaneously estimate functions of detection probability and abun-
dance (Royle, 2004).	 We	 used	 a	 stacked	 data	 structure,	 wherein	
detection histories for each site- year were recorded independently, 
and we included a random intercept, �0,i, for sites i to account for this 
dependence	in	the	variance	structure	(Kéry	&	Royle,	2021).	Steps	of	
analysis	included	comparison	of	Poisson,	zero-	inflated	Poisson,	and	
negative	binomial	mixtures	for	abundance	with	Akaike	information	
criteria	(AIC)	following	Kéry	and	Royle	(2021), from which the nega-
tive	binomial	distribution	was	selected.	We	also	used	AIC	to	conduct	
model selection and evaluate different covariates for detection and 
abundance, beginning with univariate analyses to assess strength 
and relationship of covariates, each centered and standardised, 
before building multivariable models in a manual forward stepping 
fashion.	When	nested	models	that	differed	by	only	a	single	param-
eter	were	within	≤2	ΔAIC	units,	we	additionally	screened	to	exclude	
models	with	uninformative	parameters	following	Arnold	(2010).	We	
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conducted analysis in R (v. 4.1.2; R Core Team, 2021) following code 
and	model-	fitting	procedures	provided	by	(Kéry	&	Royle,	2021), with 
the exception that we used an updated version of the package un-
marked with capability to accommodate our random effect struc-
ture	(v.	1.2.3;	Fiske	&	Chandler,	2011).

We	evaluated	model	fit	by	first	refitting	our	final	model	with	in-
creasing values of K, the maximum value of N used in computing 
marginal likelihoods, to ensure model maximum likelihood esti-
mates	(MLEs)	were	identifiable	inside	rather	than	on	the	boundary	
of	the	parameter	space	for	abundance	and	detection	 (Kéry,	2018). 
Second,	because	overdispersion	can	cause	violation	of	assumptions	
and inflated predictions from n- mixture models, we evaluated mar-
ginal, ĉm, and site- sum, ĉs, scalar indicators of overdispersion based 
on	Pearson	residuals	as	well	as	quantile-	quantile	 (qq)	plots	of	 ran-
domised quantile residuals against fitted values using the package 
nmixgof	(Knape	et	al.,	2018).

We	used	the	final	model	to	make	predictions	of	detection	prob-
ability by site, year and week, as well as to estimate abundance at 
each site. Individual moose were not counted independently in our 
data, and instead observations of one or more moose together rep-
resented the unit of modelled abundance. Thus, we adjusted our 
predictions to total moose abundance by multiplying by the mean 
estimate	of	observation	group	size,	estimated	distinctly	per	admin-
istrative region using counts of moose at each observation. To mini-
mise	the	influence	of	outlier	values	on	average	group	sizes	reported	
by	hunters,	we	capped	the	maximum	group	size	at	the	95th	percen-
tile value of six moose per group when estimating mean values, in 
accordance	with	reported	group	sizes	 for	Shiras	moose	 (Anderson	
Jr.	&	Lindzey,	1996;	Peek	et	al.,	1974).

To estimate the total abundance of moose per year across all sites 
within our study area (excluding areas outside of moose hunting dis-
tricts), we generated 10,000 Monte Carlo simulations of site- year 
abundance estimates drawing from random distributions according 
to	model-	estimated	mean	and	standard	deviation	per	site-	year.	We	
then used the mean and standard deviation of these estimates to 

predict	statewide	totals	for	each	year.	We	then	used	two	post-	hoc	
analyses to evaluate the evidence for a trend in moose abundance 
over time. First, we re- estimated our final n- mixture model with a 
covariate for year in the abundance term to assess the annual trend 
in	average	abundance	per	site	(Kéry	&	Royle,	2021) and second, we 
conducted a log- linear regression of annual estimates by year to 
evaluate evidence for a temporal trend at the statewide scale.

3  |  RESULTS

An	average	of	31,511	(range	26,390–	40,578)	deer	and	elk	hunters	
annually	 responded	 to	 our	 phone	 surveys,	 or	 59%–	64%	 of	 those	
sampled from the total population. From this sample, we collected 
an average of 3409 (range 2338– 4675) spatially mapped moose 
observations per year specific to the 5- week general rifle season 
(Figure 1).	Mean	group	 size	per	observation	across	 sites	was	1.99	
moose/observation	 (SD = 0.54).	 Translating	 these	 observations	 to	
independent weekly count data yielded a mean of 6.4 moose obser-
vations (range 0– 37) counted per site- week across 79 sites (moose 
HDs).

Our best n- mixture model included effects of week, year (number 
of responses), site (proportionate forest cover), and site- year (hunter 
effort) on detection probability, as well as an effect of site (area of 
forest and shrub habitat) on abundance (Table 1).	 Specifically,	 de-
tection probability was highest during weeks 1– 3 of the season and 
lowest during weeks 4 and 5 (Table 2; Figure 2). Detection probabil-
ity also increased in years with more survey responses and in site- 
years with more hunter effort (Table 2; Figure 2). Lastly, detection 
probability decreased in sites with higher proportionate forest cover 
(Table 2; Figure 2). The abundance of moose increased with the total 
area of forest and shrub cover at each site (Table 2).

Model	MLEs	were	not	on	the	boundary	of	the	parameter	space	
as determined by the effects of increasing K	on	model	AIC	and	pa-
rameter	estimates.	Estimates	were	slightly	truncated	at	K = 200	but	

Detection and abundance models

AIC ΔAICp λ

Intercept- only �0,i 9187.4 500.7

Responses �0,i 9086.3 399.6

Week �0,i 8843.2 156.5

Effort �0,i 9183.1 496.4

Forest �0,i 9178.6 491.9

Week + responses �0,i 8741.7 55.0

Week + responses + forest �0,i 8733.7 47.0

Week + responses + forest + effort �0,i 8712.6 25.9

Week + responses + forest + effort �0,i + areashrub 8698.4 11.7

Week + responses + forest + effort �0,i + areaforest 8691.1 4.4

Week + responses + forest + effort �0,i + areashrub,forest 8686.7 0.0

Week + responses + forest + effort �0,i + areashrub + areaforest 8689.5 2.8

TA B L E  1 N-	mixture	models,	wherein	
variation in abundance is described by 
a negative binomial distribution with 
mean λ and variation in observed counts 
is described by a conditional binomial 
distribution with detection probability, 
p, and including covariates for p and λ, 
random intercepts, �0, per site, i,	Akaike	
information	criteria	(AIC)	and	difference	in	
AIC	from	the	best	model,	ΔAIC,	for	moose	
count data in Montana, 2012– 2016.
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stabilised at or above K = 300,	which	we	 used	 for	 final	 estimates.	
There was no evidence of problematic overdispersion as estimated 
by marginal, ĉm = 0.90	 and	 site-	sum	 ĉs = 0.86	measures	 of	 overdis-
persion. Furthermore, qq plots of both site- sum and observation re-
siduals showed good fit of the negative binomial mixture estimates 
(Figures S1 and S2).

Predicted	weekly	detection	probability	estimates	averaged	0.10	
per site- year- week (range 0.01– 0.29; Figure 3) and yielded cumu-
lative detection probabilities of 0.06– 0.77 across the 5- week pe-
riod	 of	 each	 study	 year.	 Predictions	 of	 abundance	 averaged	 136	
(SDsite = 14.7)	and	ranged	17–	416	moose	per	site-	year.	Corresponding	
density estimates averaged 0.099 (range 0.002– 0.439) moose/km2 
across entire sites and averaged 0.200 (range 0.017– 0.799) moose/
km2 when limiting area to only that of shrub or forest cover within 
each site (Figure 3).	Statewide	abundance	totals	across	the	five-	year	
study period averaged 10,755 moose (SDyear = 151.8)	 and	 ranged	
from a minimum of 9925 (in 2016) to 11,620 (in 2014; Figure 4).

4  |  DISCUSSION

Querying a sample of deer- elk hunters for observations of a non- 
target species yielded thousands of georeferenced moose detec-
tions per year, and analysis in a temporally structured framework 
yielded estimates of both detection probability and abundance. 
Statistical	estimates	of	abundance	at	this	scale	are	unprecedented	
for moose in Montana (DeCesare et al., 2016) and are encouraging 
for	long-	term	monitoring	over	space	and	time.	We	leveraged	infra-
structure, staff and phone calls already committed to annual hunter 
harvest phone surveys when collecting these data. On average, this 
added	 1153 h	 (SD = 125)	 of	 person-	hours	 specific	 to	 collection	 of	
these data, annually but would likely require more in jurisdictions 
where such surveys are not already in place.

Survey	effort	varied	across	years,	 sites	and	week	according	 to	
the number of respondents per year, spatiotemporal variation in 

hunter effort per site- year, and week of the hunting season. In ac-
cordance with previous studies, variation in these metrics of effort 
corresponded to variation in detection probability (Figure 2; Dillon 
et al., 2020; Rich et al., 2013). Detection probability also decreased 
with increases in proportionate forest cover per site, akin to effects 
of	forest	cover	on	aerial	sightability	of	ungulates	(Griffin	et	al.,	2013) 
and other applications of n- mixture models to observation data in 
forested	environments	(O'Kelly	et	al.,	2018). The combined effect of 
these covariates yielded a wide range of predicted detection prob-
abilities among sites (0.06– 0.77 per year) with important effects 
on the translation of observation counts to predicted abundance  
estimates (Figure 3).	While	raw	counts	of	moose	observations	were	
dense in some areas, such as portions of southwestern portion of 
Montana, model predicted density estimates were also high in some 
areas with lower raw counts, such as the more forested portions of 
northwestern Montana (Figure 3).

Recent evaluations of n- mixture models have raised awareness 
of the potential for biased results when failing to meet various model 
assumptions	 (Barker	 et	 al.,	2018; Dennis et al., 2015;	 Kéry,	2018; 
Knape	et	al.,	2018; Link et al., 2018). Results of n- mixture models 
are particularly sensitive to double counting of the same individuals, 
overdispersion in abundance or detection, or identifiability prob-
lems	(Kéry,	2018;	Knape	et	al.,	2018; Link et al., 2018). In our case, 
we consolidated observations that overlapped in space and time to 
reduce the potential for double counting, and multiple goodness- 
of- fit evaluations supported that our models were identifiable and 
overdispersion	low.	However,	we	surely	failed	to	meet	the	assump-
tion that heterogeneity in detection probability was fully specified 
by our limited set of covariates (Link et al., 2018), and potential for 
biased abundance predictions remains.

While	we	are	unable	to	validate	these	results	across	their	full	ex-
tent due to limited independent moose population data, some com-
parisons	to	other	data	can	be	made.	A	single	moose	density	estimate	
generated from applying camera- trap sampling to a subset of moose 
HD106	in	the	Fisher	River	drainage	in	northwest	Montana	yielded	
comparable and overlapping density estimates (d2012– 2016 = 0.167–	
0.187 moose/km2 from this study vs. dcamera = 0.15	 [95%	CI:	0.11–	
0.21]	 moose/km2;	 N.	 J.	 DeCesare,	 unpublished	 data).	 Vetting	 of	
our results with local biologists' expert opinion and aerial minimum 
count data (not population estimates) suggested general agreement 
in	some	HDs	but	cases	of	likely	under-		and	over-	estimation	in	other	
areas. Thus, model predictions may be interpreted as indicative of 
relative abundance more so than absolute abundance in some local 
situations, where detection probability estimates do not fully meet 
assumptions	(Barker	et	al.,	2018).

We	recommend	interpretation	of	these	estimates	in	tandem	with	
raw input data for moose management in Montana. Ultimately, mon-
itoring of trends in both model- based abundance estimates as well 
as raw observation input data should be indicative of relative spatial 
and temporal trends in both moose populations and the likelihood 
of hunters encountering moose. This combination of information 
should be a robust platform for management where allocation of 
moose hunter opportunity is a primary goal. Furthermore, using our 

TA B L E  2 Covariate	coefficients	α for detection probability p and 
coefficients β for site abundance λ from the top N- mixture model 
for moose count data in Montana, 2012– 2016.

p α SE z p

(intercept) −2.155 0.277 −7.8 <0.001

Week2 −0.126 0.029 −4.3 <0.001

Week3 −0.035 0.028 −1.3 0.213

Week4 −0.417 0.033 −12.5 <0.001

Week5 −0.415 0.033 −12.4 <0.001

Responses 0.191 0.017 11.2 <0.001

Forest −0.600 0.071 −8.4 <0.001

Effort 0.313 0.052 6.0 <0.001

λ β SE z p

(intercept) 3.975 0.250 15.9 <0.001

areahabitat 0.408 0.073 6.2 <0.001
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population estimates as one input to an integrated population model 
that also incorporates a biological model of moose population dy-
namics,	empirical	vital	rate	data	(e.g.	Newby	&	DeCesare,	2020) and 
other survey data (DeCesare et al., 2016) for moose in this region 
would likely improve the rigour of local predictions as well as their 
utility	for	management	(McCaffrey	&	Lukacs,	2016).

Founding	 a	 species	 monitoring	 program	 on	 citizen	 science	
methodologies relies on truthfulness and accuracy of hunter re-
call	(Beaman	et	al.,	2005;	Jones	et	al.,	2020) as well as retention of 
public engagement in both hunting and providing observation data 

(Dambly et al., 2021). In our case, we assumed that location data 
were sufficiently accurate and consistent across observers for us 
to screen data for double counting using spatiotemporal informa-
tion.	However,	 inaccuracy	 in	spatial	 location	data	may	 insert	extra	
heterogeneity into such data and could bias our estimates of de-
tection probability low and inflate population estimates. Regarding 
retention of observers, the observations are a passive extension of 
hunting season management, and do not require prior recruitment, 
scheduling, or time commitment outside of the publics' efforts to 
participate	 in	 hunting.	 However,	 response	 rates	 of	 public	 citizens	

F I G U R E  2 Predicted	effects	of	(a)	the	number	of	survey	respondents,	(b)	week	of	hunting	season,	(c)	proportion	of	forested	land	cover	
within each site and (d) hunter effort (hunter- days per km2), on the probability of moose detection, Montana, 2012– 2016.
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providing	 such	 information	 to	 Montana	 Fish,	 Wildlife	 and	 Parks	
(MFWP)	 over	 the	 phone	 may	 be	 sensitive	 to	 survey	 fatigue	 and	
declines	 in	 participation	 over	 time	 (de	Koning	 et	 al.,	2021;	 Porter	
et al., 2004). Recent advances in hunter survey through mobile apps 
(e.g.	Boyce	&	Corrigan,	2017) may offer improvements to both of 
these challenges if they reduce the time between observation and 

reporting, add tools for mapping locations and simplify participation 
(LaBonte	&	Kilpatrick,	2019).
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Figure S1. QQ plots of site- sum randomised- quantile residuals 
against standard normal residuals for fit of the top model to count 
data for moose in Montana, 2012– 2016. Under a good fit residuals 
should	be	close	to	the	identity	line	(see	Knape	et	al.	2018	for	more	
information).
Figure S2. QQ plots of observation randomised- quantile residuals 
against standard normal residuals for fit of the top model to count 
data for moose in Montana, 2012– 2016. Under a good fit residuals 
should	be	close	to	the	identity	line	(see	Knape	et	al.	2018	for	more	
information).
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