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Abstract

Understanding animal distribution is important for management of populations

and their habitats. Across the western United States, elk (Cervus canadensis)

provide important ecological, cultural, and economic benefits and the sound

management of their habitats is of vital importance. In western Montana,

National Forest lands are managed in part to provide and protect elk habitat

needs, and summer elk habitat is managed with consideration to motorized

routes. We evaluated the relative importance of nutritional resources, access

routes, and other landscape attributes on elk summer resource selection at

multiple spatial scales, and compared resource selection among nine different

southwestern Montana elk populations to determine the applicability of gener-

alized regional models for informing habitat management recommendations.

First, we developed nine population-specific and two regional summer resource

selection models. Second, we evaluated the predictive performance of each

model within and among elk populations using cross-validation scores to iden-

tify the best model. We found that in all populations nutritional resources, best

represented using normalized difference vegetation index (NDVI) metrics, were

the most important factors associated with elk summer resource selection.

Access routes affected resource selection in all populations; however, the influ-

ence of access routes was relatively modest as compared with nutritional

resources. Of the access route covariates we considered, density of all routes

(i.e., routes open and closed to motorized use) explained most variation in sum-

mer elk resource selection. Validation of population-specific resource selection

models among populations revealed that in many cases model predictions

extrapolated to areas outside of the development area had modest to poor pre-

dictive performance, especially as distance from the modeled population

increased. Thus, caution should be used when extrapolating resource selection

5 Retired.

Received: 17 June 2022 Accepted: 22 June 2022

DOI: 10.1002/ecs2.4311

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Ecosphere published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecosphere. 2022;13:e4311. https://onlinelibrary.wiley.com/r/ecs2 1 of 20
https://doi.org/10.1002/ecs2.4311

 21508925, 2022, 12, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4311 by Justin G

ude - M
ontana State L

ibrary , W
iley O

nline L
ibrary on [03/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-4534-9487
https://orcid.org/0000-0001-5528-3309
mailto:dhranglack@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecs2
https://doi.org/10.1002/ecs2.4311
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.4311&domain=pdf&date_stamp=2022-12-28


models based on a single study population to other populations. Regional

models of resource selection predicted resource selection across populations

better than population-specific models, particularly when constructed by

pooling data from multiple populations, and we recommend these types of

models be used to inform regional habitat management policies. Our results

suggest that managers should expand any current management paradigm for

elk summer habitat that is focused on limiting access route density to also con-

sider nutritional resources as an important component of elk summer habitat.

KEYWORD S
elk nutrition, GPS telemetry, habitat management, habitat selection, NDVI, resource
selection function, road effects

INTRODUCTION

Understanding the relationships between organisms and
their environments is an essential aspect of ecology, and
important in guiding management of wildlife habitats
(Morrison et al., 2012). However, the relationship between
wildlife and their habitats is not static, as various
landscape-level processes, such as fire (Allred et al., 2011;
Fisher & Wilkinson, 2005), grazing by domestic herbivores
(Torstenson et al., 2006; Yeo et al., 1993), reintroduction of
carnivores (Mao et al., 2005), and anthropogenic distur-
bances through road building (Benítez-L�opez et al., 2010),
logging (Fisher & Wilkinson, 2005), and recreation
(Bettinger et al., 1999; Czech et al., 2000; Thiel et al., 2007),
can change the direction and strength of wildlife–habitat
relationships. Additionally, individuals of the same species
may have different selection patterns (Estes et al., 2003;
Gillingham & Parker, 2008). As such, models explaining
wildlife resource selection are constantly being created and
adapted by management agencies in an attempt to improve
wildlife and habitat management, and respond to changes
in the habitat conditions.

Ungulates are important wildlife species to consider
with regard to resource selection given their important
ecological impacts (Wisdom et al., 2006). Herbivory by
ungulates may have direct and indirect impacts on vege-
tation and plant community structure, even leading to
alternative stable states (Marshall et al., 2013, 2014; Wolf
et al., 2007). Indirect effects of ungulate herbivory can
also have large influences on vegetation community
structure through changes in nitrogen balances and
cycling (Hobbs, 1996; Rexroad et al., 2007; Schoenecker
et al., 2004; Singer & Schoenecker, 2003; Ter Beest, 2005),
soils (Hobbs, 1996; Ter Beest, 2005), litter accumulation
and composition (Hobbs, 1996; Rexroad et al., 2007), and
disturbance regimes (Hobbs, 1996). Following the
reintroduction of top predators, both density and

behaviorally driven trophic cascades associated with
changing ungulate distributions have been documented,
often working in concert with climate, soils, human
activity, and hydrology (Fortin et al., 2008; Hebblewhite
et al., 2005; Kauffman et al., 2013; Marshall et al., 2014;
Ripple & Beschta, 2012). These direct and indirect effects
can have dramatic impacts on plant community structure
and composition, and thus impact the quality and quan-
tity of nutritional resources available to ungulates.

The nutritional resources available to ungulates on
summer range are of particular importance as females
must meet the nutritional demands of lactation, while
also accruing fat reserves for the winter (Cook et al.,
1996, 2013; Monteith et al., 2014; Spitz et al., 2019).
During this critical summer period, nutritional resources
slowly decrease as plants advance through phenological
stages (Baker & Hobbs, 1982; Monteith et al., 2011;
Ranglack & du Toit, 2015). Landscape processes,
including wildfire and livestock grazing, may influence
nutritional resources available to ungulates and create a
mosaic of nutritional resources across the landscape.
Depending on the intensity and timing of grazing or
wildfire, these processes may increase or decrease
ungulate nutritional resources (Allred et al., 2011;
du Toit, 2011; Fuhlendorf et al., 2009; Odadi et al.,
2011; Ranglack & du Toit, 2015). Additionally, insect
infestations and plant diseases can reduce the available
nutritional resources (Allen & Segarra, 2001;
Hewitt, 1977). This distribution of nutritional resources
across the landscape is likely an important factor
affecting elk summer habitat selection (Rowland &
Wisdom, 2015).

Until recently, elk (Cervus canadensis) summer range
habitat management on western North American public
lands broadly (Rowland et al., 2000), and specifically in
Montana (MDFWP and USDA Forest Service, 2013),
focused primarily on the management of route density as
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it relates to habitat effectiveness (Christensen et al., 1993;
Lyon, 1979, 1983; Rowland et al., 2000). Habitat
effectiveness for elk measures the actual elk use of an area
in relation to the expected use of that area if no access
routes were present. As such, roadless areas are designated
as 100% effective for elk, while areas with route densities
of 1 km/1.61 km2 are considered to be 75% effective,
2 km/1.61 km2 as 50% effective, etc., as actual elk use of
those areas is estimated to be less than potential use
(Lyon, 1983). This concept focuses on elk distribution
across the landscape with an underlying recognition that
effective use of summer habitats is required for optimal fat
accumulation, thus acknowledging the importance of
nutritional resources on the landscape (Cook et al., 1996,
2013; MDFWP and USDA Forest Service, 2013; Monteith
et al., 2014; Rowland & Wisdom, 2015; Spitz et al., 2019),
but the direct management actions are focused on access
routes. While elk preference for areas away from access
routes is generally accepted, particularly during the fall
hunting seasons (Forman & Alexander, 1998;
Montgomery et al., 2013; Ranglack et al., 2017; Rowland
et al., 2000, 2005), these specific guidelines do not explic-
itly reflect many other potentially important factors in elk
resource selection, such as nutritional resources, topogra-
phy, and predation (Allred et al., 2011; DeVoe et al., 2019;
Edge & Marcum, 1991; Montgomery et al., 2012;
Ranglack & du Toit, 2015; Spitz et al., 2019).

Using fine-scale location data from nine elk
populations in southwest Montana collected during
2005–2014, our goal was to evaluate the effects of nutri-
tional resources, access routes, and landscape covariates
on elk summer resource selection to provide recommenda-
tions for elk summer range habitat management. First, we
developed and validated population-specific resource
selection models. Then we combined data across all
populations using two different methods to develop
regional resource selection models. We validated
population-specific and regional models within and
among populations to understand the amount of variation
in selection patterns among populations and determine
the utility of models to inform regional management rec-
ommendations. We predicted elk would select for areas
with higher nutritional resources and fewer access routes;
however, we predicted the relative influence of these fac-
tors may vary among populations as a function of land-
scape attributes and resource availability.

METHODS

Study area

The study area included the summer ranges of nine elk
populations in southwest Montana (Figure 1). Vegetation

types across these summer ranges include a mix of
montane forest (e.g., aspen [Populus tremuloides], Douglas
fir [Pseudotsuga menziesii], lodgepole pine [Pinus contorta]),
open sage-grassland (e.g., big sagebrush [Artemesia
tridentata], bluebunch wheatgrass [Pseudoroegneria
spicata], Idaho fescue [Festuca idahoensis]), and upland
grasslands, meadows, and unvegetated areas, but the rela-
tive proportions of these habitat types vary among the
populations. Climate in these ranges is characterized by
short, cool summers. Mean July–August temperature and
precipitation varied across the summer ranges from 13.3 to
16.7�C and 70.5 to 99.5 mm (PRISM Climate Group, 2015).
Elevation, access route densities, and indices of nutritional
resources varied among the populations’ ranges (Table 1).
All elk ranges included a mix of public (primarily
United States Forest Service [USFS] or National Park
Service) and private lands, with the majority of each
summer range being located on public land. Mule deer
(Odocoileus hemionus), white-tailed deer (Odocoileus
virginianus), bighorn sheep (Ovis canadensis), and moose
(Alces alces) also occupy the elk summer ranges. Wolves
(Canis lupus), mountain lions (Puma concolor), black
bears (Ursus americanus), and coyotes (Canis latrans)
are the elk predators in the system, and grizzly bears
(Ursus arctos) also occupy the summer ranges in the
eastern portion of the study area. For full descriptions of
these areas, see Shideler et al. (1994), Gude et al. (2006),
White et al. (2012), and Proffitt et al. (2013, 2014).

Data collection

During 2005–2014, we captured and radio-collared adult
female elk from nine populations in southwestern
Montana on their winter ranges using helicopter
net-gunning or chemical immobilization. Elk populations
were selected for capture and radio-collaring as part of
several different projects related to wolf–elk interactions,
elk brucellosis, or elk survival investigations, each operat-
ing under Institutional Animal Care and Use Committee
approved capture and handling protocols. Collar func-
tionality differed among populations and years, and all
collars contained GPS receivers that collected 12–48 loca-
tions per day for a minimum of 1 year. Because our goal
in this project was to synthesize data collected across a
large spatial scale, we pooled data from these nine elk
populations to create a regional elk location dataset
(Appendix S1).

Data preparation

We developed resource selection functions using a used–
available framework (Johnson, 1980; Manly et al., 2007).
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We treated summer locations collected from the GPS col-
lars as the used sample. We selected July 1 as the summer
start date to exclude any potential movements from calv-
ing to summer range, as >95% of elk birthing events
occur by the end of June (Cross et al., 2015). We selected
August 31 as the summer end date to correspond to the
period before the archery hunting season began. We ran-
domly selected four used locations per individual per day
to ensure that sample sizes were equal for all individuals
regardless of collar scheduling, to reduce spatial

autocorrelation in the data (Hansteen et al., 1997), and to
avoid potential bias in habitat use that can be the result
of systematic data selection (e.g., collecting locations at
0000, 0600, 1200, and 1800). All collars were scheduled to
drop-off after 1 year. However, this did not occur for a
small number of individuals. As such, we only used data
from the first summer each individual was collared to
avoid overweighting those few individuals with two sum-
mers of data. For the Bitterroot East Fork and Sapphire
populations, there were 2 and 14 individuals respectively

F I GURE 1 The study area included nine elk population summer ranges in southwest Montana, USA.

4 of 20 RANGLACK ET AL.
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that had at least one day with fewer than four locations.
In these cases, we used all available data for those days
(<4 locations), thus underweighting those individuals in the
models. We defined population-specific summer range by
randomly selecting one location per day per individual to
reduce spatial autocorrelation between the locations, and
then building 99% kernel density estimator (KDE) contours
using “kernelUD” in the “adehabitat” package in R, using
the ad hoc smoothing method. We randomly generated
available points at a 1:5 used:available ratio within the
population-specific summer range, as this provided ade-
quate available points for model convergence (Northrup
et al., 2013) as well as adequately described the distribution
of each covariate within the study area. Using the
population-specific summer range follows the recommenda-
tions of Edge et al. (1986) and MDFWP and USDA Forest
Service (2013). This was evaluated by simulating various
used:available ratios for each covariate in each of the
population-specific summer ranges, following Lowrey
et al. (2017).

Covariates

We evaluated 12 covariates describing elk resource
selection based on a review of previous elk studies and
current metrics used for elk habitat management
(Christensen et al., 1993; Hillis et al., 1991; Lyon, 1979;
McCorquodale, 2013; Pettorelli et al., 2011; Proffitt
et al., 2011). We divided the covariates into three covari-
ate suites representing the potential effects of nutritional
resources, access routes, and general landscape attributes
on elk resource selection (Table 2). The nutrition suite
contained an elk forage quality model developed based
on vegetation data collected in the southern Bitterroot
Valley of Montana (Proffitt et al., 2016), as well as two
remotely sensed metrics of greenness derived from the
normalized difference vegetation index (NDVI): NDVI
amplitude and time-integrated NDVI. While the influ-
ence of forest canopy on NDVI values can limit the use-
fulness of unprocessed NDVI values in forested areas
(Borowik et al., 2013), using NDVI amplitude or

TAB L E 1 Landscape attributes and weather (mean with SD in parentheses) at nine elk population summer ranges within the

southwestern Montana, USA, study area.

Population
Elev.
(m)

Density (km/km2) NDVI Proportion Jul–Aug

Motorized
route

All
routes

Time
Int. Amp. Forest Grassland Shrubland

Temp.
(�C)

Precip.
(mm)

Bitterroot
East Fork

1960 0.92 1.34 48.0 42.8 0.70 0.14 0.15 14.8 77.2

(318) (4.10) (4.91) (10.9) (9.0) (1.39) (17.8)

Bitterroot
West Fork

1948 0.64 1.04 45.4 40.4 0.84 0.10 0.06 15.3 74.7

(278) (3.41) (4.37) (9.3) (7.4) (1.05) (9.7)

Blacktail 2280 0.65 0.91 58.2 53.7 0.37 0.24 0.37 14.3 84.1

(266) (3.50) (4.10) (8.4) (8.9) (1.13) (11.9)

Dome Mountain 2461 0.17 0.22 53.2 48.8 0.65 0.14 0.19 13.3 88.1

(270) (1.70) (1.98) (9.6) (8.6) (1.26) (15.2)

Madison Valley 2359 0.48 0.81 54.1 49.0 0.57 0.18 0.23 13.9 98.9

(305) (3.02) (3.98) (10.5) (8.5) (1.41) (20.0)

Paradise Valley 2300 0.48 0.83 48.1 45.3 0.61 0.16 0.21 14.1 99.5

(398) (3.04) (3.96) (10.4) (9.1) (2.0) (18.6)

Pioneers 2270 0.71 0.99 45.6 41.8 0.69 0.10 0.19 13.7 85.9

(255) (3.60) (4.21) (9.4) (8.6) (0.8) (20.9)

Sage Creek 2227 0.67 0.86 60.1 54.6 0.45 0.22 0.32 14.7 78.4

(244) (3.52) (3.95) (7.3) (8.2) (0.9) (13.7)

Sapphires 1516 1.66 1.79 40.6 36.1 0.55 0.26 0.19 16.7 70.5

(358) (5.58) (5.82) (11.7) (7.5) (1.5) (13.2)

Note: The values presented are based on the minimum spatial scale available for each of the covariates. Weather data are from PRISM Climate Group (2015).
“Elev.” is the elevation; “Time Int.” is time-integrated normalized difference vegetation index (NDVI; average values across all years of the study); “Amp.” is
NDVI amplitude (average values across all years of the study); “Forest,” “Grassland,” and “Shrubland” represent the proportions of the study area found to be
of those land cover types, based on the descriptions found in Appendix S2. In the cases in which the land cover types do not add to 100%, the remaining land
cover was treated as “other.” “Precip.” is the precipitation and “Temp.” is the temperature.
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time-integrated NDVI partially mediates the issue. NDVI
amplitude values represent the increase in NDVI from
the start of the growing season to the peak (Bradley &
Mustard, 2007), while time-integrated NDVI represents
the net primary production during the growing season
(Jonsson & Eklundh, 2002; White et al., 2009). The access
route suite included three metrics of human disturbance:
the density of all access routes, density of motorized
access routes, and a binary variable representing elk
security areas. Security areas were defined as roadless
areas of a given size (≥1, 2, or 4 km2) that are a given dis-
tance from the nearest routes (≥805, 1610, or 3220 m).
These definitions were based on current US Forest
Service management strategies. Lastly, the landscape
suite contained four landscape attributes including land
cover type, slope, elevation, and solar radiation. We eval-
uated three land cover types: forest, grassland, and shrub-
land. We treated these as binary variables with all other
land cover types in the area (unvegetated, developed,
agricultural, etc.) acting as a reference category when all
three land cover types were included in the same model.
Full details on covariate development are included in
Appendix S2.

Although resource selection analyses are typically
conducted at the resolution of the available covariate
data, animals may perceive and select resource attributes
at different spatial scales (Anderson et al., 2005; DeVoe
et al., 2015; Laforge et al., 2015). Therefore, we consid-
ered each continuous covariate over six different spatial
scales (30, 100, 250, 500, 750, and 1000 m). We estimated
each spatial scale using moving window averaging to cre-
ate a new raster with pixel values corresponding to the
average values of the moving window size. Examining
multiple spatial scales is becoming increasingly impor-
tant as remote sensing technology advances and the reso-
lution of available data becomes increasingly fine and
possibly exceeds an animal’s ability to detect differences
from one pixel to the next. Additionally, because the rela-
tionship between selection and covariates may not always
be linear, we evaluated multiple functional forms (linear,
quadratic, and pseudothreshold) for each continuous

covariate. Pseudothreshold functional forms were fit
using a natural log transformation (Franklin et al., 2000).
Binary covariates were only considered at the 30-m
spatial scale, to account for telemetry error and the origi-
nal data structure. We evaluated spatial scale and func-
tional forms for each covariate in an exploratory analysis,
unless the most appropriate functional form could be
identified a priori from existing literature or the resolu-
tion of data did not allow for analysis at certain spatial
scales (Table 2).

Modeling

We standardized all continuous covariates by subtracting
the mean and dividing by two times the standard devia-
tion prior to analysis (Gelman, 2008; Lele, 2009). We used
a hierarchical approach to model selection (Franklin
et al., 2000) to reduce the number of competing models
(Burnham & Anderson, 2002). We screened all continu-
ous covariates for multicollinearity using Pearson correla-
tion coefficients. Any covariates that were found to be
collinear (r ≥ j0.7j) were not included in the same model.
First, we examined all possible univariate models in an
exploratory analysis to determine the most explanatory
functional form(s) and spatial scale(s) for each covariate.
We considered covariates from all the models within five
corrected Akaike information criterion (AICc) units of
the top model and advanced only these covariates to the
next stage, but they were not allowed to occur in the
same model as each mother moving forward. This was
done as it is possible that some of the less supported func-
tional form/spatial scale combinations from the simple,
univariate models may gain more support when com-
bined with other covariates in more complex models. We
removed uninformative covariates, if any, from the
models being moved forward to the next tier following
Arnold (2010). Next, we evaluated all combinations of
informative covariates within the landscape suite and
determined the best model using AICc. For the access
route and nutrition suites, we evaluated all informative

TAB L E 2 The covariates included in the analysis of elk summer resource selection in southwest Montana, USA, divided into three

covariate suites (nutrition, access routes, and landscape), where square brackets, [/], indicate the spatial scales (in meters) that were

evaluated (30, 100, 250, 500, 750, 1000 m, all) and curly brackets, {/}, indicate the functional forms (L, linear; 2, quadratic;

ps, pseudothreshold; all, all) that were evaluated (not applicable to binary covariates).

Nutrition Access routes Landscape

Bitterroot[1000]{L,ps} Density of All Routes[all]{L,ps} Forest Slope[all]{all}

NDVI—Amplitude[≥250]{L,ps} Density of Motorized Routes[all]{L,ps} Grassland Solar Radiation[all]{all}

NDVI—Time-Integrated[≥250]{L,ps} Security Area Shrubland Elevation[all]{all}

Abbreviation: NDVI, normalized difference vegetation index.
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covariates and only advanced the single top covariate that
best represented access routes and nutritional resources
to the next tier. Finally, we combined the remaining
informative covariates from the landscape suite in all
possible combinations with the top covariates from the
nutrition and access route suites to determine the overall
best model for summer elk resource selection.

We fit population-specific models using a conditional
logistic regression model, conditioned on year, using
“cph” in R v. 3.2.2. We chose this modeling framework to
ensure that the available points for each year were evalu-
ated against the used points for that year, as we had annu-
ally varying nutrition covariates and a different set of
instrumented individuals for each year, as well as to allow
for direct comparison with the results of Ranglack et al.
(2017), which used data from these same elk herds. A gen-
eralized linear mixed model (GLMM) was also considered,
as it would not require the GPS data to be subset, instead
using random effects on AnimalID and Year to control for
differences in sample sizes for individuals and year
(Appendix S3). Regional models of elk selection were
constructed using two separate approaches: a consensus
and a pooled approach. The consensus model was created
following the same tiered approach described above,
though we forced all the populations to follow a consensus
model structure for each tier in a meta-analysis frame-
work. We determined the consensus model structure by
ranking each model within a tier among populations and
then summing the ranks. The model with the lowest
summed rank was moved forward into the next tier, until
the final model structure had been fit (Rowland
et al., 2018). We determined the consensus model coeffi-
cients using the “rmeta” package in R. We combined the
results from all the populations for each covariate with
equal weighting. The pooled model was created by pooling
all the data across populations into a single dataset and
following the same tiered approach described for the
population-specific models. We created a “herd-year” vari-
able that was unique for each population-by-year combi-
nation to use as the strata in the pooled model to ensure
that the used points for each population-by-year combina-
tion were compared only to the available points for that
strata, thus maintaining population-level availability.
Resource selection function values for the top models were
rescaled to range from 0 to 1 for reporting, representing
the relative probability of selection.

Model validation

We validated population-specific models to determine
both their internal accuracy and external applicability.
Internal accuracy refers to how well the model is

validated using the data for that population, while
external applicability refers to how well the model pre-
dicts elk resource selection in areas outside where the
model was developed. We assessed internal and external
accuracy using Spearman’s rank correlations between
population-specific models predicted relative use and
actual used locations in 10 equal area bins (Boyce
et al., 2002). Internal accuracy was assessed using k-folds
with five random folds (Boyce et al., 2002), with 100 repe-
titions. To estimate external applicability, we assessed
how well each population-specific model predicted rela-
tive use in the other eight populations (Wiens
et al., 2008). Given that the year of data collection did not
always match among populations, we removed the strati-
fication on year when testing the external applicability
when necessary, but kept the remaining model structure
intact. Lastly, we validated the consensus and pooled
models by fitting the model with data for eight of the
populations and predicting the use of the ninth as a form
of leave-one-out cross-validation. We repeated this pro-
cess so that each population’s use was predicted using
the model fitted with data from the other eight
populations.

Post hoc interaction analysis

Given that selection for areas with high nutritional value
can overwhelm selection against areas near access routes
(Dodd et al., 2007; Gagnon et al., 2007), we conducted a
post hoc exercise to examine these impacts. For each of
the top models, we included an interaction between the
included nutrition and access route covariates. We com-
pared the interaction model to the additive model using
ΔAICc to determine whether the interaction term
improved model fit.

RESULTS

We used a total of 83,946 elk locations collected from
339 individual elk in our analyses (Appendix S1). Of all
the elk locations, 62.2% occurred in forested areas,
23.0% occurred in grasslands, and 14.6% occurred in
shrublands. Mean elevation of used points was 2180 m
(SD = 436). Mean density of motorized routes and all
routes (both open and closed to motorized use) of used
points measured at the 1000-m scale was 0.658 km/km2

(SD = 1.000) and 1.054 km/km2 (SD = 1.242), respec-
tively. Mean NDVI amplitude and time-integrated NDVI
values of used points were 50.0 (SD = 10.8) and 55.3
(SD = 11.2) respectively. The mean slope of the used
points was 13.2� (SD = 8.5).
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Population-specific models

The top population-specific models were consistent in that
they each contained covariates from each of the nutrition,
access route, and landscape covariate suites (Table 3), with
the GLMM providing similar results (Appendix S3) to the
conditional logistic regression analysis. Presented here so
as to maintain consistency with Ranglack et al. (2017).
The nutrition covariate was generally the most influential
of all the covariates, as well as the only covariate that was
consistent in the strength and direction of selection
across all populations’ top models, with all populations
increasing selection for areas with increases in the
nutrition covariate (Table 4). The two NDVI metrics,
time-integrated NDVI and NDVI amplitude were
selected at roughly equal frequency and always in a
pseudothreshold functional form, though the specific spa-
tial scale used in each model was more variable. Holding
all other covariates in the top population-specific model at
their mean, the relative probability of selection (0–1)
increased by 123.0% (Bitterroot East Fork), 59.5%
(Bitterroot West Fork), 244.8% (Paradise Valley), and
684.7% (Sage Creek) as time-integrated NDVI increased
from 35 to 70 (within the range of observed values for all
populations). For NDVI amplitude, the relative probability
of selection increased by 543.0% (Blacktail), 21.2% (Dome
Mountain), 31.2% (Madison Valley), 129.1% (Pioneers),
and 44.0% (Sapphires) as NDVI amplitude increased from
35 to 70 (Figure 2).

All of the populations, except Paradise Valley,
included one of the route density metrics, with the den-
sity of motorized routes being generally more common
than the density of all routes. The pseudothreshold and
linear forms were included at equal frequency and the
largest spatial scale of the covariate was generally pre-
ferred (Table 4). The direction of selection for the access
route covariates was variable and the strength of selec-
tion for or against routes was generally small relative to
the strength of selection for nutrition (Table 4). Holding
all other covariates in the top population-specific model
at their mean, the relative probability of selection (0–1)
changed by 16.5% and 13.4% (Bitterroot East Fork), 17.3%
and 0.69% (Bitterroot West Fork), and �15.4% and
�0.97% (Sapphires) when increasing the density of all
routes from 0 to 2 km/km2 and 2 to 4 km/km2, respec-
tively. Following those same methods for the density of
motorized routes, we saw changes in the relative proba-
bility of use of �21.9% and �1.41% (Blacktail), 26.6% and
0.90% (Dome Mountain), �4.78% and �5.29% (Madison
Valley), �31.2% and �39.8% (Pioneers), and �21.5% and
�27.7% (Sage Creek). For the Paradise Valley population,
moving from secure to unsecure areas led to an increase
in the relative probability of use of 55.6% (Appendix S5).

Model selection results showed few generalities in the
influence of landscape covariates on resource selection.
Abiotic features such as slope and solar radiation were
included in all the population-specific models, and eleva-
tion was included in all the population-specific models
except for the Blacktail population. These were included
at both the large or small spatial scale, with little support
for intermediate spatial scales. All of the continuous
covariates in the landscape models were included in the
quadratic functional form. Of the land cover covariates,
grasslands were the most commonly included, followed
closely by forests. Shrublands were only included in four
of the population-specific models. Despite these generali-
ties, the direction and strength of selection for each land-
scape covariate were variable among the populations
(Appendix S6).

Model validation results indicated that each
population-specific model was accurate in the area where
it was created, though the transportability of the
population-specific models to the other populations was
variable (Table 5). Each of the population-specific models
was unable to accurately predict at least one other
population’s resource selection, and all but the Paradise
Valley model predicted at least one other population’s
resource selection worse than would be expected at
random.

In seven of the nine populations, a post hoc explor-
atory analysis found a significant interaction between
nutrition and access route covariates, resulting in
improved model fit based on ΔAICc. The top Madison
Valley and Pioneers population-specific models did not
show support (ΔAICc ≤ 2) for both the post hoc
interaction and original additive model, while the other
seven top population-specific models were all improved
by including the interaction (ΔAICc ≥ 22). In areas of
higher nutrition (time-integrated NDVI or NDVI
amplitude = 70), elk responses to increased route density
were generally small. In areas of lower nutrition
(time-integrated NDVI or NDVI amplitude = 35), elk
responses to increased route density were generally nega-
tive. In addition, areas of higher nutrition had positive
relative resource selection values across the range of
route densities examined (0–4 km/km2), while areas of
lower indexed nutrition generally had negative relative
resource selection values across all route densities
(Appendix S7).

Regional models

The top regional models of summer elk resource selection
followed similar patterns to the population-specific
models (Table 3). Both the top consensus (Appendix S8)
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TAB L E 3 Corrected Akaike information criterion (AICc) model selection results for the best models explaining elk summer resource

selection in southwest Montana and mean cross-validated Spearman rank correlation (rs).

Population Top model(s) K AICc ΔAICc Mean rs

Bitterroot
East Fork

Time-Integrated NDVI[500]{ps} + Density of All Routes[1000]
+ Elevation[1000]{2 + Forest + Grassland + Shrubland
+ Slope[30]{2} + Solar Radiation[1000]{2} + strat(year)

11 287,433 0.00 0.99

Bitterroot
West Fork

Time-Integrated NDVI[250]{ps} + Density of All Routes[1000]{ps}
+ Elevation[1000]{2} + Forest + Shrubland + Slope[30]{2}
+ Solar Radiation[100]{2} + strat(year)

10 205,859 0.00 1.00

Blacktail NDVI Amplitude[1000]{ps} + Density of Motorized Routes[1000]{ps}
+ Forest + Grassland + Slope[1000]{2} + Solar Radiation[250]{2}
+ strat(year)

8 152,214 0.00 0.99

Dome Mountain NDVI Amplitude[250]{ps} + Density of Motorized Routes[1000]{ps}
+ Elevation[30]{2} + Forest + Grassland + Slope[100]{2}
+ Solar Radiation[100]{2} + strat(year)

10 194,129 0.00 1.00

NDVI Amplitude[250]{ps} + Density of Motorized Routes[1000]{ps}
+ Elevation[100]{2} + Forest + Grassland + Slope[100]{2}
+ Solar Radiation[100]{2} + strat(year)

10 194,130 0.65 1.00

Madison Valley NDVI Amplitude[250]{ps} + Density of Motorized Routes[1000]
+ Elevation[30]{2} + Forest + Grassland + Slope[100]{2}
+ Solar Radiation[100]{2} + strat(year)

11 203,902 0.00 1.00

NDVI Amplitude[250]{ps} + Density of Motorized Routes[1000]
+ Elevation[100]{2} + Forest + Grassland + Slope[100]{2}
+ Solar Radiation[100]{2} + strat(year)

11 203,904 1.31 1.00

Paradise Valley Time-Integrated NDVI[1000]{ps} + Security Definition I
+ Elevation[100]{2} + Grassland + Slope[1000]{2}
+ Solar Radiation[30]{2}

9 197,127 0.00 1.00

Pioneers NDVI Amplitude[500]{ps} + Density of Motorized Routes[1000]
+ Elevation[1000]{2} + Forest + Grassland + Shrubland
+ Slope[100]{2} + Solar Radiation[1000]{2}

11 138,601 0.00 1.00

Sage Creek Time-Integrated NDVI[1000]{ps} + Density of Motorized Routes[1000]
+ Elevation[30]{2} + Forest + Grassland + Slope[250]{2}
+ Solar Radiation[1000]{2} + strat(year)

10 94,242 0.00 1.00

Time-Integrated NDVI[1000]{ps} + Density of Motorized Routes[1000]
+ Elevation[100]{2} + Forest + Grassland + Slope[250]{2}
+ Solar Radiation[1000]{2} + strat(year)

10 94,243 1.15 1.00

Time-Integrated NDVI[1000]{ps} + Density of Motorized Routes[1000]
Elevation[30]{2} + Forest + Shrubland + Slope[250]{2}
+ Solar Radiation[1000]{2} + strat(year)

10 94,246 4.08 1.00

Sapphires NDVI Amplitude[250]{ps} + Density of All Routes[750]{ps}
+ Elevation[1000]{2} + Forest + Grassland + Shrubland
+ Slope[250]{2} + Solar Radiation[1000]{2}

11 203,681 0.00 1.00

Consensus NDVI Amplitude[500]{ps} + Density of Motorized Routes[1000]{ps}
+ Elevation[1000]{2} + Grassland + Shrubland + Slope[100]{2}
+ Solar Radiation[100]{2}

10 NA NA NA

Pooled Time-Integrated NDVI[500]{ps} + Density of Motorized Routes[100]{ps}
+ Elevation[30]{2} + Forest + Grassland + Slope[100]{2}
+ Solar Radiation[30]{2} + strat(herd_year)

10 1,708,407 0.00 1.00

Note: The top models within five ΔAICc of the top-ranked model for each population are presented. Covariates: square brackets, [/], indicate the spatial scale in
meters; curly brackets, {/}, indicate the functional form (none, linear; 2, quadratic; ps, pseudothreshold). “K” indicates the number of parameters included in
the model. Covariate estimates and standard errors for each of the top models are included in Appendix S4.
Abbreviations: NDVI, normalized difference vegetation index; NA, not applicable.
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and pooled (Figure 3) models included covariates from
each of the covariate suites, and nutrition had the stron-
gest influence on resource selection (Table 4). The nutri-
tion covariate at the 500-m spatial scale and a
pseudothreshold functional form was included in both
regional models, but they differed in which nutrition
covariate was included. The consensus model included
NDVI amplitude and the pooled model included
time-integrated NDVI. Holding the other covariates in
the top model at their mean, increasing either NDVI
amplitude (consensus) or time-integrated NDVI (pooled)
from 35 to 70 resulted in an increase in the relative prob-
ability of selection (0–1) of 39.1% and 132.6% respectively.

In both regional models, access routes were best
represented by the density of motorized routes in a
pseudothreshold functional form. The consensus model
included this covariate at the 1000-m spatial scale and
the pooled model included this covariate at the 100-m
spatial scale (Table 3). Both models predicted that motor-
ized routes were negatively associated with resource

selection (Table 4), though this association was stronger
for the pooled model than the consensus model.
Increasing motorized route density from 0 to 2 km/km2

and from 2 to 4 km/km2 changed the relative probability
of selection (0–1) by �0.97% and �0.05% for the consen-
sus model, and �14.4% and �0.8% for the pooled model.

Similar to the population-specific models, the land-
scape covariates in the regional models included elevation,
slope, and solar radiation in quadratic functional forms.
Slope was included at the 100-m scale for both models, but
elevation and solar radiation were selected at the 1000-m
and 100-m scales, respectively, for the consensus model
and the 30-m scales for both covariates in the pooled
model. The consensus model included grassland and
shrubland, and the pooled model included grassland and
forest. The direction of selection for the covariates that
were included in both models were similar with the excep-
tion of slope and solar radiation (Appendix S6).

Model validation results indicated that each regional
model predicted population-specific resource selection

TAB L E 4 Coefficient estimates and 95% confidence intervals (CIs, in parentheses) representing the influence of nutrition and access

routes on elk summer resource selection in southwest Montana, based on the top population-specific models.

Population

Nutrition suite Access routes suite

Covariate bβ (CI) Covariate bβ (CI)

Bitterroot
East Fork

Time-Integrated NDVI[500]{ps} 1.20
(1.15, 1.25)

Density of All Routes[1000] 0.47
(0.44, 0.50)

Bitterroot
West Fork

Time-Integrated NDVI[250]{ps} 0.85
(0.80, 0.90)

Density of All Routes[1000]{ps} 0.32
(0.27, 0.37)

Blacktail NDVI Amplitude[1000]{ps} 1.39
(1.32, 1.46)

Density of Motorized Routes[1000]{ps} �0.57
(�0.62, �0.52)

Dome Mountain NDVI Amplitude[250]{ps} 0.34
(0.29, 0.39)

Density of Motorized Routes[1000]{ps} 0.46
(0.42, 0.50)

Madison Valley NDVI Amplitude[250]{ps} 0.60
(0.56, 0.65)

Density of Motorized Routes[1000] �0.11
(�0.17, �0.05)

Paradise Valley Time-Integrated NDVI[1000]{ps} 1.85
(1.77, 1.93)

Security Area Definition I �0.88
(�0.94, �0.82)

Pioneers NDVI Amplitude[500]{ps} 0.92
(0.85, 0.98)

Density of Motorized Routes[500] �0.63
(�0.69, �0.56)

Sage Creek Time-Integrated NDVI[1000]{ps} 1.04
(0.96, 1.12)

Density of Motorized Routes[1000] �0.40
(�0.48, �0.32)

Sapphires NDVI Amplitude[250]{ps} 1.05
(0.99, 1.10)

Density of All Routes[750]{ps} �0.54
(�0.58, �0.50)

Consensus NDVI Amplitude[500]{ps} 2.38
(2.32, 2.44)

Density of Motorized Routes[1000]{ps} �2.68E�3
(�3.94E-3, �1.43E-3)

Pooled Time-Integrated NDVI[500]{ps} 1.08
(1.06, 1.11)

Density of Motorized Routes[100]{ps} �0.22
(�0.23, �0.20)

Note: Covariates: square brackets, [/], indicate the spatial scale in meters; curly brackets, {/}, indicate the functional form (none, linear; 2, quadratic; ps,
pseudothreshold). For quadratics, the main effect is listed first. Values in boldface indicate CIs that do not overlap 0. Full model details can be found in
Appendix S4. All estimates are standardized with the exception of the consensus model, which is on the original scale.
Abbreviation: NDVI, normalized difference vegetation index.
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well. The consensus model accurately predicted elk
resource selection in seven of the nine populations, and
the pooled model accurately predicted elk resource

selection in all of the individual populations (Table 5).
On average, both regional models significantly and accu-
rately predicted elk resource selection.

F I GURE 2 Plots for the nutrition covariate included in the top model for each population, presented on the original, non-standardized

scale. The plots present the coefficient estimate (line) and 95% confidence interval (shaded) across the available range of the covariate, while

holding all other covariates in the model at their mean. The plots are arranged based on geography (roughly east to west) moving from the

top left to the bottom right of the plot grid. The y-axis is analogous to the log odds of selection. Note that the x-axis may be different for each

of the population-specific models. NDVI amp., normalized difference vegetation index amplitude; Time Int. NDVI, time-integrated NDVI.
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Given that the consensus model is built by averaging
the coefficient estimates and standard errors of the
population-specific models in a meta-analysis framework
(Appendix S8), it was not possible post hoc to assess if a
nutrition and access route interaction improved model fit
based on ΔAICc. In the exploratory analysis, including a
nutrition and access route interaction in the top pooled
model improved model fit (ΔAICc ≥ 491). Similar to the
population-specific models, the pooled model showed
that at high nutrition values, elk responses to increased
route density were generally small, but at lower nutrition
values, elk responses to increased route density increased
and were negative (Appendix S7).

DISCUSSION

Our modeling of elk summer range resource selection
across southwestern Montana suggests that greenness is
the primary factor affecting summer elk distribution.
We recommend that elk summer habitat management
paradigms based on managing motorized route density to
maintain elk habitat effectiveness should be expanded
to also directly consider nutritional resources.
Additionally, our results suggest that population-specific
resource selection models may be poor predictors of
resource selection outside the area in which they were
generated. Broader scale, regional models built through

meta-analysis of population-specific models or by pooling
data across populations are more reliable predictors of
resource selection across multiple areas and are better
suited to inform regional habitat management policies.

Indices of nutritional resources were consistently the
strongest predictors of summer resource selection in each
of the population-specific and regional models, highlight-
ing the importance of nutrition in elk summer resource
selection in this region and the need to incorporate nutri-
tional resource considerations more directly in elk sum-
mer habitat management beyond managing route density
for habitat effectiveness. The importance of summer
nutritional resources on ungulate population dynamics
is well documented (Cook et al., 2013; Monteith
et al., 2014), and in some ecosystems summer nutritional
resources may have a stronger effect on population
dynamics than winter severity (Cook, Johnson, et al.,
2004). Summer nutritional condition affects elk preg-
nancy rate, calf growth rate, and overwinter survival
(Cook, Johnson, et al., 2004; Cook et al., 2013; Spitz
et al., 2019), and may be an important predictor of popu-
lation growth rate for ungulates (Monteith et al., 2014).
In southwest Montana, most studies indicate that nutri-
tion is not commonly limiting elk pregnancy rate or over-
winter survival (Cook, Cook, & Mech, 2004; Evans
et al., 2006; White et al., 2011), however some
populations may experience nutritional limitations that
limit productivity (Proffitt et al., 2016). Additionally, the

TAB L E 5 The generalizability of each population-specific and regional top model of summer elk resource selection in southwest

Montana was estimated by predicting resource selection for the other populations (subsequent columns) and assessing accuracy of

predictions using the Spearman rank correlation coefficient.

Population

Spearman rank correlation coefficient

MeanEF WF BT DM MV PV PI SC SA Pooled

Bitterroot East Fork (EF) 0.99 0.99 0.77 0.71 0.56 1.00 �0.26 0.78 0.49 0.67

Bitterroot West Fork (WF) 0.95 1.00 �0.78 0.81 �0.30 0.82 0.61 �0.40 0.61 0.37

Blacktail (BT) 0.66 �0.73 0.99 0.59 1.00 0.59 0.94 1.00 0.92 0.66

Dome Mountain (DM) 0.59 0.92 0.76 1.00 0.94 0.99 0.96 �0.35 0.82 0.74

Madison Valley (MV) �0.14 �0.86 1.00 0.96 1.00 0.56 0.90 0.83 0.66 0.55

Paradise Valley (PV) 0.84 0.95 1.00 0.16 1.00 1.00 0.01 0.76 0.36 0.68

Pioneers (PI) �0.08 �0.25 1.00 0.99 1.00 0.27 1.00 0.99 0.70 0.62

Sage Creek (SC) 0.73 �0.15 1.00 0.07 0.99 0.95 0.99 1.00 0.75 0.70

Sapphires (SA) 0.99 0.58 �0.50 �0.85 �0.92 0.60 �0.93 0.98 1.00 0.11

Consensus 0.20 �0.71 0.95 0.99 0.96 0.93 0.99 0.99 0.75 0.67

Pooled 0.96 0.99 1.00 1.00 1.00 0.92 0.92 0.96 0.70 1.00 0.94

Mean 0.57 0.17 0.62 0.54 0.62 0.77 0.52 0.66 0.70

Note: Values on the diagonal represent the results of the k-fold cross-validation with five random folds and 10 equal area bins, averaged over 100 repetitions.
Model generalizability is the mean Spearman rank correlation coefficients for the top model for each population (rows). Population generalizability is the mean
Spearman rank correlation coefficient for each population (columns). Values in boldface are significant (α = 0.05) and negative values indicate that the model
predicted resource selection worse than random.
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importance of nutrition may persist into the fall hunting
season (DeVoe et al., 2019; Ranglack et al., 2017; Spitz
et al., 2019). Managers should identify areas where elk
are likely to be nutritionally limited and be particularly
thoughtful about directly incorporating nutrition into
summer habitat management strategies in these areas.
This may include directly manipulating nutritional
resources through the use of fire (Fuhlendorf et al., 2009;
Ranglack & du Toit, 2015), domestic ungulate grazing
(du Toit, 2011; Odadi et al., 2011), or timber harvest that
opens a mature forest canopy (Cook et al., 1996), while
also managing road densities, especially in areas of rela-
tively low nutritional quality.

Our results suggest that NDVI may be a useful index
of ungulate nutritional resources, although additional
field data are required to fully understand the relation-
ship between NDVI and ungulate forage quality
(Borowik et al., 2013). NDVI amplitude and time-
integrated NDVI may be indicators of ungulate nutri-
tional resources, and we found that both performed well
in our models, with five of the population-specific models
and the consensus model containing NDVI amplitude

and the remaining models containing time-integrated
NDVI. NDVI is a metric of greenness based on satellite
imagery and has become one of the most widely used
vegetation indices in ecology (Pettorelli et al., 2005). We
found elk selected for areas that have larger increases in
NDVI across the summer growing season, which would
be indicative of foraging areas that start the spring at
lower greenness levels and increase in greenness as the
growing season progresses. Similar patterns have been
documented in a wide variety of animal species, making
NDVI an easily accessible and useful tool in wildlife ecol-
ogy (Pettorelli et al., 2011).

Surprisingly, NDVI indices predicted elk summer
resource selection better than a landscape model of for-
age quality developed within the study area (Proffitt
et al., 2016). NDVI is simply an index of greenness rather
than a direct measurement of elk forage quality or quan-
tity. Time-integrated NDVI, our most supported nutrition
covariate, represents the greenness of the entire growing
season. By contrast, the Bitterroot elk forage quality
model integrated ground-based measurements of forage
species biomass, phenology, and digestibility to estimate

F I GURE 3 Plots for the covariates included in the top pooled regional model, presented on the original, non-standardized scale. The

plots present the coefficient estimate (line) and 95% confidence interval (shaded) across the available range for each covariate, with the other

variables held at their mean value. The y-axis is analogous to the log odds of selection. NDVI, normalized difference vegetation index; Time

Int. NDVI, time-integrated NDVI.
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forage quality, then modeled late-summer landscape for-
age quality as a function of landscape attributes. It may
be possible that elk are responding to areas of higher
overall productivity instead of nutritional resources only
during the late-summer period. Additionally, the
Bitterroot model may suffer from issues of extrapolation
in that it was developed in the Bitterroot Mountains and
may not be a good predictor of nutritional resources in
the other study areas. NDVI metrics do not suffer from
these same issues of extrapolation. Additionally, land-
scape nutrition modeling is time- and labor-intensive and
may only be conducted at relatively small scale. By con-
trast, NDVI-derived indices are freely available, cover
broad spatial scales, and are updated routinely, allowing
agencies to evaluate changes in plant productivity associ-
ated with elk summer nutritional resources that may
occur due to varying weather/climate and changes associ-
ated with natural and anthropogenic impacts (fire, dis-
ease and insect outbreaks, silviculture treatments, etc.),
making these indices a practical tool for regional or
large-scale applications. However, as methods for land-
scape nutrition modeling advance, these types of land-
scape nutrition models may ultimately provide additional
data that directly estimate forage nutritional resources
for a given species (Avgar et al., 2015; Hebblewhite
et al., 2008; Pretorius et al., 2011; van Beest et al., 2010).

In addition to the strong effect of nutritional
resources on elk summer resource selection, access
routes were also included in all models as a predictor of
resource selection. The effects of access routes on elk are
widely documented (see McCorquodale, 2013 for review),
and elk habitat management on public lands in
Montana is structured on managing route density to
maintain habitat effectiveness (MDFWP and USDA
Forest Service, 2013). While our results generally support
that elk select for areas away from access routes, we
found that the effects of routes on summer resource
selection were highly variable. Of the nine top-ranked,
population-specific resource selection models we devel-
oped, five models included a covariate representing elk
selection for areas away from routes and four included a
covariate representing elk selection for areas nearer
routes. At the regional level, both models predicted elk
selection for areas with fewer motorized routes, but the
magnitude of the effect was small relative to other fac-
tors, particularly nutrition (Table 4). The relative weak-
ness of this preference for areas with fewer routes is
contrary to expectations based on existing literature and
current management strategies (Christensen et al., 1993;
Forman & Alexander, 1998; Lyon, 1979; Montgomery
et al., 2013), which largely show the strong negative
impacts of roads on resource use, though there is some
variation by sex and season. In these same areas, the

impact of access routes on elk habitat selection increased
dramatically during both the archery and rifle hunting
seasons, suggesting that the influence of roads may
vary seasonally, with elk being more tolerant of roads
during periods when hunting does not occur (Ranglack
et al., 2017).

Several factors may be contributing to these observed
differences. First, our models focus on elk resource selec-
tion of specific locations within established population
ranges, as recommended by Edge et al. (1986) and
MDFWP and USDA Forest Service (2013), which may
already represent population-level avoidance of areas
with the highest route densities, as found in Alberta,
Canada (Frair et al., 2008). If we evaluated first- or
second-order resource selection (Johnson, 1980), we may
have found a stronger influence of motorized routes on
elk resource selection. Second, motorized route densities
have been the target of forest travel management for sev-
eral decades (Christensen et al., 1993), reducing motor-
ized route density in some areas. The lack of a strong
influence of access routes on elk resource selection in our
study may indicate that these management actions have
been effective and should continue. It is also possible that
there is not enough traffic on the routes during summer
to influence elk behavior (Gagnon et al., 2007; Johnson
et al., 2000; Wisdom et al., 2004). Additionally, routes are
frequently built along terrain and riparian corridors that
are high-quality habitat for ungulates. These high-quality
areas may be selected for by ungulates despite their prox-
imity to motorized routes (Dodd et al., 2007; Gagnon
et al., 2007). The results of our post hoc interaction
models support this hypothesis, with elk showing little
response to route density in areas of high nutritional
value, but stronger negative responses to route density in
areas of low nutritional value (Appendix S7). Finally,
while route density metrics are sensitive to the methods
used to generate them, these population home ranges
may have lower route densities than what is found on
other public lands, leading to smaller than expected
responses in elk summer resource selection. Reported
motorized route densities on public lands in Idaho,
Oregon, USA, and Alberta, Canada, range from 0.13 to
2.54 km/km2 (Frair et al., 2008; Gratson & Whitman,
2000; Rowland et al., 2000), while mean motorized
route density in our elk population summer ranges is
0.71 km/km2 (Table 1).

Our results suggest that caution should be used when
extrapolating resource selection functions to new areas
beyond the model development area. Although each of
our population-specific models had good predictive accu-
racy in the areas in which they were created, the predic-
tive accuracy of population-specific models beyond the
area in which they were developed was sometimes poor
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and occasionally worse than random. This can be mostly
explained by geography and habitat similarity, as models
performed best for populations that were near to where
they were generated, or that contained very similar habi-
tat types. As an example, elk resource selection in the
Bitterroot West Fork summer range, which is heavily for-
ested and quite different ecologically than many of the
more open elk summer ranges for the other populations
we studied, was predicted worse than random by half of
the other population-specific resource selection models,
as well as the regional consensus model. Thus, managers
should use caution when extrapolating results of resource
selection functions to new areas. These risks are lessened
when the models are developed using data from multiple
populations, either through the use of consensus or
pooled models of habitat selection, or when the new
areas are close geographically and similar ecologically to
the area where the model was developed.

The regional consensus model performed reasonably
well and predicted elk resource selection accurately in
every population except for the Bitterroot East Fork and
West Fork populations. The consensus model likely
performed well because it was based off of a larger
dataset that captured a wider range of variability in avail-
able habitat than any one population-specific model.
However, when the direction of selection varied among
populations, as was particularly evident with the varying
positive and negative model coefficients for the effects of
route density, grasslands, and solar radiation, the aver-
aged effect in the consensus model approached zero
(Appendix S8). This highlights a potential weakness of
deriving inference or predictions from regional
meta-analyses, in that these models may not capture the
range of differences in population-specific selection pat-
terns among populations. Elk in different areas have dif-
ferent selection patterns that may arise as a result of
different availabilities or different selection patterns
(Appendix S8).

The pooled model that was based on a dataset that
included all location data from all individuals in all
populations performed the most accurately and consis-
tently. In contrast to the consensus model that used
model averaging from population-specific models to
develop a regional model, the pooled model coefficient
estimates were derived from the data without employing
any model averaging techniques. All individuals in all
sampled populations were weighted equally in the pooled
model. Additionally, all covariate values were estimated
across the range of availability for the entire region, as
opposed to being restricted to what was available in each
population-specific summer range. This pooled model
supported the conclusions of the population-specific
models with regard to the magnitude of the effects of

nutritional resources and access routes. We recommend
that, when possible, managers use data pooled from mul-
tiple populations to inform regional habitat management
policies.

The results of the spatial scale analysis offer few gen-
eralities, as there were large differences in the preferred
spatial scale among covariates and populations
(Boyce, 2006; Laforge et al., 2015). Route density is the
exception here, with the largest spatial scale being pre-
ferred fairly consistently, with only three models
(Pioneers, 500 m; Sapphires, 750 m; Pooled, 100 m)
reflecting elk responses to route density at smaller scales.
Despite the wide range of variability in the other
covariates, precision in the models was improved by the
use of various scales. The ecological patterns of selection
remained consistent across scales within a population,
but certain scales were much more supported than others
(Appendix S4), highlighting the value of performing
exploratory analyses on scale as part of resource selection
function modeling exercises. We recommend resource
selection models developed for predictive purposes
employ this modeling strategy to improve precision.
This becomes particularly important as new remote sens-
ing technologies produce spatial data at finer and finer
scales that may exceed an animal’s ability to detect such
differences. However, if resource selection models are
being used for understanding biology only, this may not
be necessary as the biological interpretation did not differ
among spatial scales.

Although carnivores have the potential to effect elk
resource selection, data to evaluate these potential effects
were not available in this study. In the presence of wolf
risk, elk may shift habitat use toward areas of higher
structural complexity (steeper slopes, more cover, etc.;
Beschta & Ripple, 2013; Creel et al., 2005; Mao
et al., 2005). However, in these areas, elk are more vul-
nerable to predation by mountain lions (Bartnick
et al., 2013; Ruth et al., 2003); thus, elk may ultimately
select for habitat types that provide the lowest overall
predation risk between these two predators (Atwood
et al., 2007; Kohl et al., 2019; Kunkel et al., 1999).
However, predator–prey spatial dynamics are complex,
with both predator and prey adjusting their space use
behavior in response to the other (Kohl et al., 2019;
Kunkel et al., 2004; Thaker et al., 2011). Thus, the effects
of predators are likely to be variable and ungulates are
able to balance the trade-off between predation risk and
forage quality (Hebblewhite & Merrill, 2009; Marchand
et al., 2015). Given the importance of nutritional
resources we demonstrated here, predator impacts are
likely less important to overall summer elk habitat selec-
tion than nutritional resources, though this balance is
likely variable in time and space.
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Our findings on the impacts of nutrition and access
routes on elk summer resource selection provide addi-
tional evidence to the importance of nutritional resources
for elk during the summer season. We recommend elk
summer habitat management should include an evalua-
tion of elk nutritional resources, as indexed by an
averaged NDVI metric. Recognizing areas of higher or
lower quality nutritional resources could help inform
management decisions regarding the placement of travel
corridors, the management of motorized use, and in plan-
ning habitat treatments to convert areas of low nutrition
into areas of higher nutrition. Nutritional resources may
be directly influenced by the use of fire (Fuhlendorf
et al., 2009; Ranglack & du Toit, 2015), domestic
ungulate grazing (du Toit, 2011; Odadi et al., 2011), or
timber harvest that opens a mature forest canopy
(Cook et al., 1996). Elk were more likely to select for
areas of lower route density, but the influences of
route density were variable and route density alone
did not drive elk summer resource selection. Therefore,
we recommend continued management for reasonable
motorized route densities, along with direct consideration
of nutritional resources in elk summer habitat manage-
ment strategies. Finally, caution should be taken when
extrapolating the results of resource selection functions
to new areas. When possible, managers should use
models developed using data from multiple populations,
either through the use of consensus or pooled models of
habitat selection, and/or use models from areas that are
close geographically and similar ecologically to the area
where the model will be applied.
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