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EXECUTIVE SUMMARY 
This report summarizes the results of a four-year (2019–2022) research project to develop 
methods for unbiased population monitoring for dusky grouse (Dendragapus obscurus; 
previously “blue grouse”) in Montana. The primary objectives of this study are to 1) generate a 
predictive model of habitat suitability for dusky grouse throughout their range in Montana, 2) 
develop and evaluate survey methods that provide unbiased statewide and regional estimates of 
dusky grouse densities and annual trend monitoring in Montana, and 3) develop methods that 
facilitate rigorous and cost-effective evaluations of grouse-habitat relationships and the effects of 
management.  
We built and evaluated a statewide habitat model for dusky grouse in Montana using an 
ensemble approach. We obtained dusky grouse observations collected during the spring (April–
June) from 2009–2020 from the Integrated Monitoring in Bird Conservation (IMBCR) program 
and extracted habitat information for detected/not-detected locations using remotely-sensed 
geospatial datasets. We evaluated relative habitat use with resource selection functions (RSFs) 
calibrated using generalized linear mixed models and randomized classification trees (random 
forest, RF, technique). For the RSFs, candidate models representing hypothesized relationships 
between grouse detections/non-detections and habitat conditions (e.g., forest type and coverage, 
average elevation, slope) were compared using multi-model inference based on information 
theory. We found the following spatially-explicit habitat attributes to have a significant effect on 
whether or not a dusky grouse was detected at a site: average distance to nearest stream, average 
distance to nearest road, proportion of foothill conifer wooded steppe, proportion of montane 
sagebrush steppe, proportion of trees with a height of 1–5 m, and the proportion of trees with a 
height of 16–20 m. Our RSF model had high predictive accuracy with an ROC value of 0.89 
(95% CI: 0.85–0.93), and correctly classified 150/193 of the independently detected grouse 
locations collected by FWP. For the RF, the top 10 important variables in decreasing order of 
importance were: proportion of trees with a height of 16–20m, average slope, average elevation, 
proportion of Douglas fir forest and woodland, proportion of trees with a height of 21–25m, 
proportion of montane-foothill deciduous shrubland, proportion of montane mixed conifer forest, 
proportion of area with 30–39% shrub canopy cover, proportion trees with a height of 1–5m, and 
proportion of area with big sagebrush steppe. The ROC value for the random forest was 0.87 
(95% CI: 0.83-0.92), and the model correctly classified 94% (181/193) of the independently 
detected grouse locations. Given that both models had high predictive accuracy, we created 
binary maps (habitat & non-habitat) that we then combined to obtain our ensembled prediction. 
Our ensemble habitat model classified 109,125 km2 in Montana to be in the two highest relative 
probability of use categories, with the majority of the dusky grouse habitat predicted to occur in 
FWP administrative regions 1,2,3, with some habitat in FWP administrative regions 4 and 5.  
In 2019 we conducted a pilot season to compare different sampling methods including the timing 
of the sampling period (spring vs summer) and the use of electronic playback to increase 
detection. In 2020 and 2021 we expanded our survey effort to all of western Montana and moved 
transects from off-trail in 2019 to on roads and trails in order to evaluate the impact of route type 
on abundance and detection. From the pilot season in 2019 we found that spring surveys with 
electronic playback were most effective for detecting dusky grouse. Comparing route type (off-
trail, trail, or road) for spring point count surveys we found that abundance of dusky grouse was 



higher off-trail and that probability of detecting a dusky grouse was slightly higher on roads and 
trails. 
We used the expanded survey effort in 2020 and 2021 to obtain empirical estimates of local 
abundance and detection that we used to inform our different scenarios for simulation datasets. 
Given that estimates of local abundance were similar when evaluated using hierarchical distance 
sampling models and single-season N-mixture models, we chose only one model’s results to 
inform our different simulation scenarios. We used an average abundance of 0.18, a high 
abundance of 0.31, and a low abundance of 0.08. For detection we estimated an average constant 
detection and detection under ideal survey conditions. We found that for the N-mixture models, 
the average probability of detection was 0.37, and under ideal conditions, the probability of 
detection was 0.57. For the hierarchical distance sampling models for point counts, we found that 
sigma, which is used to estimate the half-normal detection function, was 43 under average 
conditions and 58 under ideal survey conditions. For hierarchical distance sampling models for 
line transects, sigma, which was again used to estimate a half-normal detection function, was 42 
under average conditions, and 51 under ideal survey conditions. For hierarchical distance 
sampling with time removal models for point counts, we estimated both the probability that an 
individual would be available to be detected and the probability of detecting an individual given 
that it is available. Under average conditions, the probability that an individual was available was 
0.65, and under ideal conditions it was 0.89. The probability of detecting an individual given that 
it is available was estimated using distance sampling. We estimated a half-normal detection 
function using sigma, which was 43 under average conditions and 48 under ideal conditions. 
Based on the empirical estimates of local abundance and detection, we conducted statistical 
simulations to evaluate the efficacy of different survey protocols and statistical estimators for 
monitoring dusky grouse. Based on management criteria of FWP, an acceptable monitoring 
program should produce unbiased estimates of regional abundance with a coefficient of variation 
of less than 15%. Using simulations, we identified two survey protocols that met our goals. One 
approach for achieving unbiased (bias = 0.01 grouse; 95% CI: -0.03, 0.04) and precise (CV = 
7%) estimates of annual abundance in a monitoring jurisdiction is one where 80 survey points 
are surveyed 4 times during periods of high detection (e.g. peak breeding period, early morning, 
and good weather conditions) and abundance is estimated using an N-mixture model. To 
evaluate whether visits could occur on the same day, we tested the effects of correlation on the 
probability of detection and local abundance estimates. When the true probability of detection 
was high (>57%), the proposed protocol produced unbiased estimates of detection and local 
abundance. The second approach for achieving unbiased (bias = -0.11 grouse; 95% CI: -0.71, 
0.57) and precise (CV = 13%) estimates of annual abundance is one where at least 35 transects of 
≥ 2.6 km are surveyed in each area of inference also during periods of high detection. 
Our recommended protocol derived from the high detection, average abundance scenario (point-
counts where 80 sites are visited four times and evaluated using N-mixture models) had high 
power (≥ 80%) to detect average population declines of 3%, 5%, and 10% over 5–10-year 
periods, which was lower than expected given precision of annual abundance estimates were < 
15%.  Nevertheless, we found that the estimated abundance trends were similar to the target 
trends, and close to the real trends estimated using the true simulated population size, suggesting 
that while there may be some uncertainty associated with the estimated trends, our protocols may 
be sufficient for long-term monitoring and able to detect small changes in population size in as 
little as 3 years. In addition, as the monitoring period increases (> 5 years), the power to detect 



small changes increases indicating that our protocols are appropriate for long-term monitoring of 
dusky grouse populations.    
A secondary objective is that our survey protocol and analytical framework can be used with 
little modification to evaluate the associations between dusky grouse abundance and habitat 
conditions or management actions (e.g., effects of beetle-kill or timber harvest). We used the two 
survey protocols that we identified for meeting our goals to evaluate the effects of a hypothetical 
habitat condition (X) on dusky grouse abundance. An acceptable sampling protocol would yield 
unbiased estimates of the true regional population size and the effect of the habitat covariate on 
local dusky grouse abundance. We evaluated scenarios with varying abundance, detection, and 
effect (strong or weak) of the hypothetical habitat covariate (X) on site-specific abundance. We 
evaluated a strong negative effect (β = -1.0) and a weaker negative effect (β = -0.5). All 
scenarios examined yield unbiased estimates of total population size and unbiased estimates of 
effect size of the site covariate, as well as reasonably precise estimates of total population size 
(CV < 15%). Overall our results suggest that the two survey protocols we identified (80 sites 
visited 4 times and analyzed by N-mixture model, and 35 line transects visited and evaluated by 
hierarchical distance sampling) will yield unbiased and reasonably precise estimates of regional 
dusky grouse populations and allow for evaluation of associations between local dusky grouse 
abundance and a habitat covariate or management action.   
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OBJECTIVES 
Objective 1: Generate a predictive model of habitat suitability for dusky grouse throughout 
their range in Montana 
Methods 
We used an ensemble approach to develop and evaluate a model to predict habitat of dusky 
grouse in Montana that can be used to identify appropriate survey sites and to explore 
relationships between habitat characteristics and relative probability of use. We obtained dusky 
grouse observation data from the Integrated Monitoring in Bird Conservation Regions 
monitoring program (IMBCR) administrated by the Bird Conservancy of the Rockies. The 
IMBCR program conducts avian point count surveys between May and July each year at 
randomly selected locations that vary among years across Montana and other western states 
(Pavlacky et al. 2017, Hanni et la 2018). We obtained observation data from spring surveys 
during 2009–2020 for a total of 25,654 surveys conducted across 6,092 sites in Montana. We 
reduced observations from the IMBCR point counts to dusky grouse detected/ not detected data 
that we then used to represent sites that were used (detected) and available (not detected). If a 
dusky grouse was detected at least once during the 11-year period, a site was classified as used 
and if a dusky grouse was not detected the site was classified as available. Sites were classified 
as available instead of unused because it is possible that a dusky grouse was present but not 
detected. After reducing the data to used and available sites, we classified 132 sites as used and 
5,960 sites as available. Given that a dusky grouse call may be difficult to detect depending on 
call type at distances greater than 50–100m (Zwickel and Bendell 2004, Farnsworth 2020) and 
potential uncertainty with GPS locations, we assumed that all dusky grouse observed were 
located within 250-m of the point count location.   
We used remotely-sensed geospatial datasets to extract habitat information within a circular 250-
m buffer drawn around each point count location. We used digital elevation models (DEMs) 
from U.S. Geological Survey, ArcGIS Pro (Environmental Systems Research Institute, Redlands, 
CA) and geospatial modeling environment (GME) to measure average elevation, slope, and 
proportions of different facing (N, NE, E, etc.) aspects of the 250-m radii area (Beyer 2015, U.S 
Geological Survey 2017). We calculated the average distance of the 250-m radii area to the 
nearest stream and to the nearest road using the spatial analyst tools of ArcGIS Pro applied to the 
Montana Spatial Data Infrastructure (MSDI) Transportation Framework and Hydrography 
datasets downloaded from the Montana state library and GME (Beyer 2015, Montana Spatial 
Data Infrastructure 2017, 2018). We downloaded LANDFIRE geospatial data with a 30 × 30 m 
spatial resolution for existing vegetation type (EVT), existing vegetation cover (EVC), and 
existing vegetation height (EVH; Landfire 2016a, b, c) . EVT is the type of plant community 
present, of which in Montana there are 121 types; EVC is the vertically projected percent cover 
by a live canopy layer given in 1% increments; EVH is the average height of the dominant 
vegetation given in 1m increments (Landfire 2016a, b, c, 2019, 2020) . We created a forest layer 



based on the vegetation physiognomy (EVT_PHYS) description for the different LANDFIRE 
vegetation types and vegetation community name (Table 1; LANDFIRE 2016a). We used the 
spatial analyst tools of ArcGIS Pro and GME to calculate the average distance to the edge of the 
forest type from within and outside of the forest (Beyer 2015). We used GME to calculate the 
proportion of vegetation type, canopy cover, and height within 250 meters of the survey location 
(Beyer 2015). After the vegetation canopy and height information were extracted, we condensed 
the information from their 1% or 1m increments to larger categories to reduce the number of 
variables evaluated. We condensed the 1% increments for the canopy vegetation to 10% 
increments and the 1-m increments for vegetation height to 5-m increments. For both types of 
habitat information there were also several categories of developed habitat or barren habitat that 
was grouped into two categories: developed and sparse vegetation. We removed variables from 
consideration if they occurred at less than 1% of the survey sites or showed no relationship 
between use and Dusky Grouse. Overall, we extracted geospatial habitat information for a total 
of 90 potential variables.  
We evaluated relative habitat use with two different methods: resource selection functions and 
random forest (randomized classification trees; McNew et al. 2021). After evaluating the two 
models we used an ensemble approach to combine their predictions using a frequency histogram 
approach to create a final more robust model of dusky grouse habitat.  
We fitted our resource selection functions (RSFs) using general linear mixed models (GLMMs) 
with a logit link function, binomial error distribution, and the “bobyqa” optimizer with a 
maximum of 100,000 iterations for estimating beta coefficients for our RSF using the ‘lme4’ 
package in program R (Bates et al. 2015, R Core Team 2017). Our response variable was either a 
dusky grouse was detected (1) or not detected (0), with our habitat factors as independent 
variables, and a random intercept term for unique IMBCR transects to account for potential 
spatial autocorrelation in the observation data due to the survey points being grouped along 
survey routes (Zurr 2009, Hanni et al 2018).  
Before fitting the models with RSFs, we explored the possibility that the behavioral response of 
dusky grouse to habitat characteristics is nonlinear. Initially we explored potential nonlinear 
responses by plotting the relationship between the response variable (detected or not detected) 
and a “smoothed” function for each habitat variable using univariate generalized additive models 
(GAMs; Guisan and Zimmerman 2000, Guisan et al 2002, McNew et al 2013). We further 
explored potential linear and nonlinear relationships using linear equations to represent the 
hypothesized linear and nonlinear forms (Guisan and Zimmerman 2000). We used [x + x2] for 
the quadratic form and the natural log of the explanatory variable ln[x + 0.001] to represent a 
pseudolinear threshold (Franklin 2000, Dugger et al 2005, McNew et al 2015). We performed 
the preliminary screenings of the three functional responses using univariate models built using 
GLMMs with a logit link function and binomial error distribution. We evaluated support for non-
linear relationships for each variable by comparing Akaike’s Information Criterion for small 
sample size (AICc) for GLMMs with linear and non-linear terms (Burnham and Anderson 2002). 
While evaluating the potential non-linear and linear relationships with AICc, if the change in 
AICc from the ‘best’ model to was < 2 then the models were considered to have similar support 
(Burnham and Anderson 2002), and we chose the simplest model (the model with fewest 
parameters). If the number of parameters was the same, we looked at figure of the plotted GAM 
function for that variable to determine which potential relationship best fit the variable. In the 
majority of the cases, the plotted GAM function best resembled the potential relationship with 



the lowest AICc. If problems with modeling a relationship occurred while attempting to evaluate 
one of the relationship forms, that relationship was not considered. 
After preliminary screenings of the functional responses, we tested for multicollinearity in the 
remaining 90 habitat predictor variables using Spearman-rank correlations to prevent overfitting 
the model. If correlations were (|r| > 0.7), we considered the variables to be correlated. If 
variables were correlated, we first used general knowledge of dusky grouse habitat to evaluate 
which variable was more biologically relevant to dusky grouse. If we had no previous knowledge 
on whether one variable was more biologically relevant, we evaluated univariate models using 
AICc, and whichever variable had the lower AICc value was selected and the other variable was 
removed from our analysis (Aldridge et al 2012). If the delta AICc was < 2, then we selected the 
most parsimonious (simplest) model (Burnham and Anderson 2002, Arnold 2010). As a variable 
may be correlated with more than one variable, we evaluated correlations based upon the highest 
correlation to the lowest, removing the variable we considered to be less relevant from the 
variable pool as we went.  
After exploring the possibility that some of the behavioral responses of dusky grouse to some 
habitat variables may be nonlinear and accounting for correlation, we had 66 variables 
remaining. We evaluated the remaining predictors within groups using backwards stepwise 
selection. The different groups included aspect, other non-vegetation variables (slope, elevation, 
distance to variables), conifer vegetation type, hardwood vegetation type, grassland vegetation 
type, shrubland vegetation type, riparian vegetation type, other vegetation type, tree canopy 
cover, shrub canopy cover, herbaceous canopy cover, other vegetation cover, and vegetation 
height. Variable removal was based on p-values calculated using the ‘lme4’ package in program 
R from asymptotic Wald tests (Hosmer et al 2013, Bates et al 2015, Heinze et al 2018). We 
removed the variable with the highest p-value > 0.05, continuing backwards selection until there 
were no more variables with p-values > 0.05 (Heinze et al 2018). The top performing variables 
from each of categories were then added to the final model set and evaluated using backwards 
stepwise selection. To obtain 95% confidence intervals for the beta coefficients we used the 
Wald method, which estimates the fixed-effects confidence intervals, using the ‘lme4’ package 
in program R (Bates et al 2015, R Core Team 2017).  
In a used versus available study design, we cannot estimate the true probability of use from a 
logistic regression model, we can only estimate the relative probability of use (Manly et al 2002). 
Because of this we used the coefficients from the estimated logistic regression for the 
corresponding slope coefficients (βi) to estimate the relative probability of use for a site by dusky 
grouse.  

w(x) = exp(β1X1 + β2X2, … βiXi)    
(Manly et al 2002, Boyce and McDonald 1999). 
We developed Random Forest models using the train and trainControl functions and the ‘rf’ 
model from the ‘caret’ package in R (Kuhn 2008, R Core Team 2017). Random forest models 
are sensitive to unbalanced datasets, such as the IMBCR dataset where the number of pseudo-
absent locations greatly outnumbered the used locations. To account for our dataset being 
unbalanced, we used the down-sampling function within the caret package to rarify the random 
sampling data to a 1:1 ratio with the used locations (Evans and Cushman 2009, Evans et al. 2011, 
Kuhn and Johnson 2013, Kuhn 2019). We tuned our model by varying the number of trees and 
the number of variables to possibly split at each node (Kuhn 2008, Kuhn and Johnson 2013, R 



Core Team 2017). The number of variables to possibly split at each node, “mtry”, was tested 
with the square root of the number of predictors, the square root of the number of predictors 
divided by 2, and the square root of the number of predictors times 2 (Breiman 2001, Kuhn and 
Johnson 2013). The number of trees tested were 300, 500, 800, 1000, and 2000. After we tuned 
the model, we trained it with repeated cross validation, with 5 folds and 500 repeated k-fold 
cross validation iterations. We used the generated variable importance to evaluate the importance 
of the different habitat characteristics for fitting the random forest model. For the variables of 
highest importance, we used partial dependency plots to evaluate the marginal effect a feature 
had on the model’s predictions (Molnar 2022). 
We developed separate statewide predictions of relative use from each model. We used a 250-m 
moving window to create layers for each variable upon which to predict our models. We, first, 
used slope coefficients from our top GLMM to fit an RSF based on the use-availability design of 
Manly et al. (2002). Second, to evaluate dusky grouse occurrence across Montana using the 
random forest model, we used the predict function in R with our 250-m circular moving window 
layers to construct a predictive map of potential dusky grouse habitat (Kuhn 2008, R Core Team 
2017).  
We evaluated the performance of our models and their predictive capability using two 
independent datasets: the training (IMBCR) dataset using k-fold cross-validation, and 
observations of 193 dusky grouse locations collected April–June from 2017–2019 by Montana 
Fish, Wildlife, and Parks (MFWP) personnel. We plotted and calculated ROC/AUC using cross 
validation of the original dataset, where we conducted a simulation with 500 iterations, where for 
each iteration 80% of the IMBCR data was used to train our model and the other 20% of the 
IMBCR data was used to test the model. We calculated the average AUC value with a 95% 
confidence interval.  
We extracted the predicted value for habitat suitability from the RSF model, RF model, and 
ensembled prediction for each independent observation for the IMBCR dataset and the MFWP 
dataset. We used the IMBCR dataset to categorize the values for each model into 5 quantile bins 
that represented the relative probability of a point being classified as a site used by dusky grouse 
(Boyce et al 2002, Johnson et al 2006, McNew et al 2013). The bins represented low, medium-
low, medium, medium-high, and high probability of relative use. We then regressed the observed 
proportion of grouse locations from the MFWP or test dataset in each quantile bin with the 
observed proportions of grouse locations in each quantile bin from the IMBCR or training 
dataset. We used linear regression to compare the training and testing datasets, and we 
considered a good model fit to have a high R2 value, a slope of 1, and an intercept of 0 (Johnson 
et al. 2006, McNew et al 2013).  
We calculated a threshold for differentiating dusky grouse habitat from non-habitat for the 
ensembled predictions using the IMBCR data using the 60% quantile bin, which correctly 
predicted 75% of the used points in the training and test datasets. To evaluate the accuracy of the 
threshold, we conducted a simulation with 500 iterations for the state-wide MFWP data and 
MFWP regional data, where we calculated the average percent of correctly predicted locations 
with a 95% confidence interval for a subset (80%) of the MFWP dataset. Because predictive 
accuracies of both models were similar (see Results) we added the two binary maps (a frequency 
histogram approach) to create a final map representing an ensembled prediction of dusky grouse 
habitat within Montana (Araujo and New 2006, Le Lay et al 2010, Stolgren et al 2010). The final 
map’s pixels consisted of a 0, 1, or 2, where a 1 represented an area where only 1 model 



predicted habitat, a 2 represented an area where both models predicted habitat, and a 0 represents 
an area where neither model predicted habitat. Areas where both models predicted habitat we 
considered high relative probability of use and areas where only one model predicted habitat we 
considered to be medium-high relative probability of use.  
Using the ensemble model, we calculated the amount of dusky grouse habitat in Montana and 
within each MFWP administrative region by summing the number of pixels predicted to be 
medium-high relative probability of use and high relative probability of use and multiplying by 
pixel size (0.0009km2).  
Results 
Using the RSF model, we found 7 variables to have significant effects on whether dusky grouse 
were detected: average distance to nearest stream, distance to nearest road, slope, proportion of 
foothill conifer wooded steppe, proportion of inter-mountain basins montane sagebrush steppe, 
proportion of trees with a height of 1–5m, and proportion trees with a height of 16–20m (Table 
2). Both average distance to nearest stream (β = 7.40 ± 2.11, β = -7.49 ± 2.70; Table 3) and 
proportion of northern rocky mountain foothill conifer wood steppe (β = 216.70 ± 32.83, β = -
5557.00 ± 137.60; Table 3) had a quadratic relationship with relative use (Figure 1). Predicted 
use was maximized at 0.5 km from a stream. When proportion of northern rocky mountain 
foothill conifer steppe reached 2%, predicted use was maximized. Proportion of inter-mountain 
basins montane sagebrush steppe (β = 0.16 ± 0.06), and the proportion of trees with a height of 
16–20 m (β = 0.32 ± 0.08) had positive nonlinear relationships with relative use by dusky grouse 
(Table 3, Figure 1). Slope had a positive linear relationship with relative probability of use (β = 
1.03 ± SE 0.26; Figure 1). Distance to road (β = -0.31 ± 0.14) and proportion of trees with a 
height of 1–5m (β = -0.63 ± 0.24) had a negative nonlinear relationship with relative use by 
dusky grouse (Table 3, Figure 1). Conditional and marginal R2 for this model were 0.69 and 
0.66, respectively, indicating that most of the variation in the response data from our model is 
described by the fixed effects, with only an additional 3% associated with our points being 
clustered along survey routes.  
Using the random forest model, we examined the variables of importance and the top 10 in 
decreasing order from most important to least important were: proportion of trees with a height 
of 16–20 m, average slope, average elevation, proportion of Douglas fir forest and woodland, 
proportion of trees with a height of 21–25 m, proportion of montane-foothill deciduous 
shrubland, proportion of montane mixed conifer forest, proportion of area with 30–39% shrub 
canopy cover, proportion of trees with a height of 1–5 m, and proportion of area with big 
sagebrush steppe (Figure 2). Partial dependency plots for the variables of importance indicated 
nonlinear relationships. Trees with a height of 16–20m, average slope, average elevation (km), 
proportion of Douglas fir forest and woodland, proportion of trees with a height of 21–25m, 
proportion of montane-foothill deciduous shrubland, proportion of montane mixed conifer forest, 
canopy shrub cover of 30–39%, and proportion of big sagebrush steppe all had positive nonlinear 
relationships, while proportion of trees with a height of 1–5m and proportion of 30–39% canopy 
herb cover have negative nonlinear relationships (Figure 3). 
The average AUC values for both the RSF model and RF model were 0.89 (95% CI: 0.85-0.93) 
and 0.87 (95% CI: 0.83-0.92), respectively, indicated high predictive accuracy (Figure 4). When 
we evaluated the RSF model with the independent datasets using quantile bins, the model 
correctly classified 150/193 (78%) of the independently detected grouse locations into the 



medium-high and high categories of relative probability of use. Linear regression produced an 
intercept close to zero (95% CI: -0.40, 0.18), a slope of 1.54 (95% CI: 0.45, 2.65), and a high R2 
value (0.87), indicating high predictive accuracy (Figure 5). The RF model predicted the 
independent observations of grouse locations with high accuracy; regression produced an 
intercept close to zero (95% CI: -0.30, 0.23), a slope of 1.17 (95% CI: 0.30, 2.06), and a R2 value 
of 0.86 (Figure 5). Because both models had similarly high predictive accuracy, we used the 60% 
quantile bin as a threshold to convert each map into a binary (habitat, non-habitat) map and 
added them to obtain ensembled estimates of spatially-explicit habitat suitability for dusky 
grouse in Montana using a frequency histogram approach. Ensemble predictions also had high 
predictive accuracy, classifying 97% of the locations correctly (Table 4).  
The RSF had more conservative estimates, while the RF model predicted higher amounts of 
habitat in Regions 1, 2, 4, and 5. In Region 3, the RSF predicted higher amounts of habitat. 
Despite these differences, across both models, MFWP regions 1, 2, & 3 had the highest amounts 
of potential dusky grouse habitat (Table 5, Figure 6). Overall, there was high consensus (93%) 
between the RSF and RF model on whether an area was considered habitat or non-habitat. Using 
our ensembled map we predict 109,125 km2 in Montana to be dusky grouse habitat (Table 5) 
with the majority of the habitat occurring in MFWP regions 1-5 (Figure 6). Of the predicted 
habitat for the ensembled map, 76% was predicted to have high relative probability of use 
(representing areas where both models agreed it was habitat) and 24% was predicted to have 
medium-high relative probability of use (areas where the models disagreed on whether it was 
habitat; Table 5, Figure 6). 
Objective 2: Develop and evaluate unbiased survey methods that provide statewide and 
regional estimates of dusky grouse densities and annual trend monitoring in Montana 
Evaluation of field survey protocols 

In 2019 (pilot season), 2020, and 2021 we selected and surveyed transects for grouse. Field 
biologists and volunteers specifically trained to conduct dusky grouse surveys selected among 
randomly generated set of potential transects within areas designated as medium-high and high 
relative probability of use by an initial resource selection function habitat suitability map created 
in 2018 (McNew et al. 2018). Surveys were conducted from 10 April–21 May in 2019 and 10 
April–1 June during 2020 and 2021. In 2019, they also conducted surveys from 17 June–31 July. 
Using a series of simulations (methods described below) in 2018 and 2019 we developed field 
protocols determining the number of sites and visits needed for unbiased estimates with the 
desired level of precision (coefficient of variation, CV, ≤ 15%). Simulation results for 
determining 2019 survey protocols, based off estimates of probability of detection and 
abundance from Utah, indicated that 100 points surveyed 3 times should be sufficient if analyzed 
using a single-season N-mixture model. Survey protocols for 2020 and 2021 were determined by 
a series of simulations with estimates of probability of detection and abundance based on 2019 
field data. Through the simulations, we determined that 360 independent points with 4 replicate 
surveys should, on average, provide unbiased annual estimates of dusky grouse abundance with 
the desired level of precision using a single-season N-mixture model analysis.  

During our pilot season in 2019, surveys only occurred in FWP Region 3 and consisted of off-
trail transects with 5 points placed 500-m apart to ensure independence, with the first point 
located 300-m from a road or trail. Each site was surveyed over 3 mornings within a 2-week 



period of closure, with surveys consisting of two four-minute point-counts conducted 
consecutively, where the first point-count was conducted without playback and the second point-
count was conducted with playback (SanDisk 8 GB Clip Jam Mp3 Player, JBL Charge 3 
speaker). During the spring, playback consisted of female calls (cantus, whinny, and cackle) to 
help elicit male responses and in the summer, playback consisted of chick distress calls to help 
elicit female responses (Stirling and Bendell 1966). Playback recordings consisted of alternating 
playback of 30 seconds of calling and 30 seconds of silence until the entire four minutes of 
survey had elapsed. Grouse detections were recorded for all mountain grouse species (dusky 
grouse, ruffed grouse, and spruce grouse) while walking between points (representing a line 
transect method) and during each point count. Care was taken to not double count grouse. If a 
grouse was detected during the line transect and during a point count, it was recorded for each 
method. The distance to each grouse, vocalization, behavior, and sex (if known) was recorded for 
each grouse detection. Distance to grouse was measured with a laser rangefinder and placed into 
four bins: 0–25m, 26–50m, 51–75m, and 76–100m.  

In 2020 and 2021, using the results of the simulations based on the 2019 data to inform 
protocols, we expanded our survey efforts from Region 3 to include Regions 1–5. Surveys 
consisted of transects located along roads or trails composed of 6 points placed 400-m apart to 
ensure independence (though the traveled distance along the road/trail may be greater than 
400m), with the first point randomly generated within 50–200m from the parking area. Surveys 
consisted of a total of four four-minute point counts at each point location along the transect, 
each of which was treated as an independent sample and all grouse observed were recorded 
during each period. Two of the four independent point counts occurred as the observer traveled 
from the start to end of the transect, then a 10-minute break occurred, and two additional point 
counts occurred as observers traveled from end to the beginning of the transect. Each pair of 
point counts was conducted one right after the other; with ≤ 1 minute between them. This yielded 
a total of 4 point-counts per point in one morning. In this way, a transect only needed to be 
visited once, while still achieving 4 replicate surveys at each point. For all point counts, 
electronic playback of the female call (edited to only include cantus and cackle) was used to 
increase detection. As before, detections were recorded for both the point counts and while 
walking the transect. The distance to each observed grouse was measured with a laser 
rangefinder and recorded into one of 4 bins: 0–25m, 26–50m, 51–75m, 76–100m.  

For all surveys in 2019 and the pairs of surveys in 2020 and 2021 we recorded survey conditions 
for the point counts such as day since the sampling period started, minutes from sunrise, 
temperature (C), wind speed (km/hr), precipitation, cloud cover, and noise level. Precipitation 
was classified into four categories: none, rain, snow, and fog. Cloud cover was divided into four 
categories: 0–15%, 16–50%, 51–80%, and 81–100% of the sky covered. We measured 
temperature (°C) and wind speed (km/hr) using a hand-held weather meter (Kestrel model 2000, 
Kestrel Meters, Boothwyn, PA). We used the time of sunrise in Kalispell for Region 1, Missoula 
for Region 2, Bozeman for Region 3, White Sulphur Springs for Region 4, and Billings for 
Region 5. After we determined the time of sunrise for each survey day, we subtracted the time of 
sunrise from the start time for a pair of point-count surveys to determine the minutes since 
sunrise for each pair of consecutive point-count surveys. Day of the season on which surveys 
occurred were calculated relative to a start day of 10 April (day 1). Noise level was broken into 



four categories: 0 = none, 1 = slight background noise, but no hearing impairment, 2 = moderate 
background noise and some hearing impairment, 3 = deafening background noise and total 
hearing impairment.  
We addressed four objectives for evaluating sampling designs: 1) we compared spring vs. 
summer sampling, 2) evaluated the efficacy of playback to increase detection, 3) compared the 
impacts of route type (off-trail, trail, road) on abundance and detection, and 4) examined the 
effect of survey conditions on probability of detection in order to identify ideal survey 
conditions, which would allow us to constrain sampling to periods of high probability of 
detection. To evaluate the efficacy of spring vs summer sampling for point-count surveys we 
compared survey effort and the number of detections for the different sampling periods. To 
evaluate the impact of playback on detection for point-counts, we evaluated single-season N-
mixture models using the R package unmarked, estimating probability of detection for two 
models: point-counts without playback and point-counts with playback (Kery and Schaub 2012, 
Fisk and Chandler 2011, R Core Team 2017). To compare route types for the point-count 
surveys, we estimated local abundance and probability of detection, again, using single season 
N-mixture models evaluated using the R package unmarked (Fisk and Chandler 2011, R Core 
Team 2017). To explore the effects of survey conditions on probability of detection using the 
2020 and 2021 data, we evaluated single-season N-mixture models, hierarchical distance 
sampling models, and hierarchical distance sampling with time removal models using the R 
package unmarked estimating the effects of survey conditions on probability of detection for 
each model type (Fisk and Chandler 2011, R Core 2021).  

Impact of playback on probability of detection—We built and evaluated single-season N-mixture 
and hierarchical distance sampling models using the R package unmarked (Fisk and Chandler 
2011, R Core Team 2017) to evaluate whether the use of playback recordings increased detection 
probability of grouse during both the spring and summer survey periods using the 2019 pilot 
data. We first evaluated potential overdispersion in our observation data for the N-mixture model 
by evaluating and comparing constant models with different distributional assumptions: a 
Poisson distribution, a negative binomial distribution, and a zero-inflated poison distribution. 
Each set of null models were evaluated using Akaike’s Information Criterion (AIC) to assess the 
most appropriate model for estimating probability of detection (Burnham and Anderson 2002, 
Kery and Schaub 2012). For the hierarchical distance sampling models we examined two models 
types: hierarchical distance sampling without temporary emigration and hierarchical distance 
sampling with temporary emigration. For each model we evaluated a constant model to identify 
the most appropriate detection function: uniform, half-normal, and hazard-rate.  
We then evaluated the effectiveness of playback recordings using two approaches. First, we 
separately analyzed the data from the point counts without playback and point counts with 
playback, while specifying constant detection and abundance across survey points. Second, we 
pooled all point count data to get six repeated visits per transect where three survey visits used 
playback and three did not. We then evaluated two competing models: one with constant 
detection and abundance, and one with constant abundance and detection varying by survey type 
where the two survey types were point counts with electronic playback and point counts without 
electronic playback.  



Identifying ideal survey conditions.—Before fitting a model to explore the relationships between 
survey conditions and probability of detection, we first examined the possibility of nonlinear 
relationships between probability of detection and a survey condition. We hypothesized 
probability of detection could exhibit a nonlinear response to temperature, minutes from sunrise, 
and day since the sampling period started due to known temporal display behaviors of grouse 
(Bendell and Elliot 1967, Zwickel and Bendell 2004, Farnsworth 2020). We explored nonlinear 
responses by using linear equations to represent our hypothesized relationship. We used [x + x2] 
to represent the quadratic form. We evaluated support for non-linear relationships using AIC to 
evaluate univariate models for the two different functional responses for the N-mixture, 
hierarchical distance sampling, and hierarchical distance sampling with time removal for point 
count surveys and hierarchical distance sampling for transect surveys. After preliminary 
screenings of the different potential functional responses, we evaluated the relationship between 
survey conditions and detection by placing all survey conditions in one model. For the 
hierarchical distance sampling with time removal model we predicted all survey conditions 
except noise level to affect availability (the probability that an individual is available to be 
detected), and predicted noise level to affect detection (probability that an individual is detected 
given that it is available; Amundson et al 2014). 
Analytical methods 
Single season N-mixture models— N-mixture models are hierarchical models that use repeated 
visits to a site within a period of closure to estimate detection probability and local abundance 
(Kery and Schaub 2012). Local abundance is the estimated average number of grouse occurring 
within a survey area, which based upon recorded distances to dusky grouse was generally within 
100-m of a point. N-mixture models are composed of two linked processes where the variation in 
local abundance is described with a Poisson distribution (ecological process), and the variation in 
detection was described by a binomial random process (observation process) as described by 
Kery and Schaub (2012) and Kery and Royle (2016) where Ni is the true abundance at site i, 
(𝑦𝑦𝑖𝑖,𝑗𝑗) is the observed counts at site i during replicate survey j and p is the probability of detecting 
a grouse during a survey (Royle 2004):  

𝑁𝑁𝑖𝑖~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) 

𝑦𝑦𝑖𝑖,𝑗𝑗|𝑁𝑁𝑖𝑖~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵(𝑁𝑁𝑖𝑖,𝑝𝑝) 

Other distributions can be specified besides a Poisson distribution such as a negative binomial or 
a zero-inflated Poisson, which separates sites into suitable sites and non-suitable sites and 
assumes a Poisson distribution only for suitable sites. Two downsides to N-mixture models is 
that the spatial domain is undefined and repeated visits are required. N-mixture models have five 
main assumptions: 1) counts occur within a period of closure, 2) no false positives, 3) detection 
probability (pij) is constant for all individuals (Ni) within a site (i) during survey j, 4) individuals 
are detected independently of other individuals, and 5) the distribution of abundance and 
detection are adequately described by their chosen parametric form (Kery and Schaub 2012, 
Kery and Royle 2016). 
Hierarchical distance sampling models—There are two types of hierarchical distance sampling 
models examined: one without temporary emigration (hereafter hierarchical distance sampling) 
and one with temporary emigration (hereafter hierarchical distance sampling with temporary 
emigration). We only used the hierarchical distance sampling model that incorporated temporary 
emigration to evaluate abundance and detection of the pilot (2019) season data because it 



requires multiple visits, while the other hierarchical distance sampling model does not (Kery and 
Royle 2016). Only requiring one visit is one of the benefits of distance sampling that can make it 
more logistically feasible than other model types such as the N-mixture model which needs 
repeated visits. For the hierarchical distance sampling model we use a three-part multinomial, 
binomial, Poisson mixture model as described by Kery and Royle (2016):  

𝑦𝑦𝑠𝑠|𝑃𝑃𝑠𝑠 ~ 𝑀𝑀𝑀𝑀𝐵𝐵𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵 (𝑃𝑃𝑠𝑠,𝜋𝜋𝑠𝑠𝑐𝑐) 

Where 𝜋𝜋𝑘𝑘𝑐𝑐 =  𝜋𝜋𝑘𝑘/(1 − 𝜋𝜋0), the index k here representing the kth element of the vector 𝜋𝜋𝑠𝑠𝑐𝑐, 

𝑃𝑃𝑠𝑠|𝑁𝑁𝑠𝑠 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵(𝑁𝑁𝑠𝑠, 1 −  𝜋𝜋0) 

𝑁𝑁𝑠𝑠 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝜆𝜆𝑠𝑠) 
The first part of the model with the multinomial distribution describes the distance class of ns 
individuals (Kery and Royle 2016). The second part of the model is used to describe the 
variation in detection or imperfect detection of Ns individuals that leads to the count data or ns 
(Kery and Royle 2016). The third part of the model is similar to the N-mixture model where 
local abundance (Ns) is estimated as a Poisson random variable with a mean λ (Kery and Royle 
2016). The main assumptions of distance sampling are that animals are distributed uniformly in 
space, probability of detection is a function of distance and at a distance of 0, probability of 
detection is 1, individuals are detected at their original locations, and that distances are measured 
without error (Buckland et al. 2011, Kery and Royle 2016). 
Hierarchical distance sample with time-removal models—Imperfect detection can be the result 
of multiple processes that include availability and perceptibility. Availability represents the 
probability of an individual being present and producing a signal that allows it to be detected 
(Amundson et al. 2014). Perceptibility is the probability that an observer will detect an individual 
given that it is available (Amundson et al. 2014). Like hierarchical distance sampling, 
hierarchical distance sampling with time removal only requires one visit. For the hierarchical 
distance sampling model with time removal, we use a four part hierarchical model as described 
by Kery and Royle (2016) and Amundson et al (2014):  

𝑀𝑀𝑠𝑠 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝜆𝜆𝑠𝑠) 

𝑁𝑁𝑠𝑠 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵 (𝑀𝑀𝑠𝑠,𝜙𝜙) 

𝑃𝑃𝑠𝑠 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵(𝑁𝑁𝑠𝑠, �̅�𝑝𝑠𝑠) 
In the first part of the model, Ms represents the local population size at a sample unit (s) where 
local population size is again estimated with a Poisson random variable with a mean λ (Kery and 
Royle 2016). The number of individuals available to be detected (Ns) is the result of a binomial 
draw with parameters probability of availability (𝜙𝜙) and Ms. The probability of availability (𝜙𝜙) is 
related to the per-interval probability of availability (pa; probability that an individual is available 
to be detected in any interval, j), where 𝜙𝜙 = 1 − (1 −  𝑝𝑝𝑎𝑎)𝑗𝑗 and, pa is estimated from the interval 
an individual was first detected in, using the data. The number of individuals detected at site s, 
ns, is the result of a binomial draw based on the number available to be detected (Ns) and the net 
probability of an individual being detected, �̅�𝑝𝑠𝑠. Last, conditional on n, the distributions for two 
categorical individual covariates for distance class (dclass) and time interval (tint) are specified. 
Cell probabilities for dclass depend on the distance based probability of detection model, while 
cell probabilities for tint are dependent on pa. Assumptions for the hierarchical distance sampling 
model with time removal are similar to the assumptions for distance sampling and include: 1) 



random placement of points with respect to the distribution of individuals, 2) individuals are 
detected at their original locations, 3) individuals are identified correctly in reference to species 
and double counting, 4) distances are measured without error, 5) availability and perceptibility 
are independent, 6) survey occurs within a period of closure, and 7) all individuals within the 
population are present during the survey so that probability of presence equals 1 (Amundson et 
al. 2014).  
Naïve Models— In our case, the naïve models represented a model that did not take imperfect 
detection into account. We hypothesize that this model will result in biased estimates of local 
abundance.  
For the naïve models we only used the best model and protocol derived from analyzing the other 
three methods, N-mixture model, hierarchical distance sampling, and hierarchical distance 
sampling with time removal, as our protocol for each scenario. For example, the best protocol for 
the N-mixture model for average abundance, high probability of detection was 80 sites visited 4 
times, so for the naïve model we simulated data for 80 sites visited once. For the naive model we 
described the count data with a Poisson distribution, where Ni was the count at each site, and 
detection was not taken into account. 

𝑁𝑁𝑖𝑖  ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) 
Simulations 
We conducted several series of simulations to evaluate the efficacy of potential survey protocols 
for monitoring dusky grouse. The first series of simulations occurred in 2018 and were used to 
inform protocols for the 2019 field season. The second series of simulations were conducted in 
2019 and were used to determine protocols for the 2020 and 2021 field seasons. The last series of 
simulations evaluated and compared four analytical methods for estimating local abundance 
under different scenarios to inform protocols and analysis for a monitoring program. Based on 
discussions with FWP Region 3 personnel, an acceptable monitoring program would produce an 
unbiased index of annual population in each administrative region. In addition, the annual 
estimate or index should have a coefficient of variation (CV) of less than 15% in order to be 
adequately precise for management. 
To quantify bias of estimates for each survey protocol scenario, we ran 400-500 iterations of 
each data simulation and subsequent analysis and calculated the difference between the estimated 
local abundance (𝑁𝑁�𝑖𝑖) and the true abundance known for the simulated site (Ni).  Similarly, we 
quantified bias in the total estimated population size by calculating the difference between Total 
𝑁𝑁� estimated as ∑𝑁𝑁�𝑖𝑖 and the true known total abundance for all sites (∑𝑁𝑁𝑖𝑖).  We compared the 
posterior distributions of the mean differences between each estimate and the true values across 
all 400-500 simulations to evaluate the bias of each estimate.  We considered an estimate to be 
clearly biased if the 95% credible interval (CrI) of the differences did not include 0.  In addition, 
at each of the iterations, we estimated the precision of each estimate by calculating the 
coefficient of variation (𝐶𝐶𝐶𝐶 =  𝑒𝑒𝑠𝑠𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒 𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠

𝑒𝑒𝑒𝑒𝑎𝑎𝑠𝑠 𝑝𝑝𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 𝑒𝑒𝑠𝑠𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒
).  We evaluated the posterior distributions 

of the 400-500 derived CV estimates to determine whether survey protocols yielded acceptable 
levels of precision for average local abundance and total population size.  We estimated 
probability that the average coefficient of variation would meet the manager-determined 
threshold of 15% by calculating the proportion of the total posterior distribution density greater 
than 0.15.   



Simulations to inform 2019 survey protocols.—Our simulation approach was to use the same 
model to build and analyze simulated observational data sets representing varying scenarios of 
survey effort. We simulated sixteen data sets and analyses of dusky grouse abundance across 
various survey protocols, including 2–3 replicated surveys within a period of population closure 
at 50, 100, 200, and 500 independent survey sites. Each simulation was parameterized with a 
unique combination of number of survey sites and number of replicate surveys (2 or 3), under 
two specifications of mean local abundance per site (λ = 0.625 grouse per survey site and 1.25 
grouse per survey site).  Preliminary work in northeastern Utah has indicated that average dusky 
grouse abundance in good to excellent habitat in Utah ranges from 0.625 to 1.25 grouse per 
survey site (Dahlgren et al. 2018).  All simulations assumed that detection probability of dusky 
grouse during a survey was similar across sites and averaged 0.5 (D. Dahlgren, Utah State 
University, personal communication).  Stochasticity in local abundance was included by 
sampling abundance from a Poisson distribution; site specific abundance 𝑁𝑁𝑖𝑖 was determined by 
𝑁𝑁𝑖𝑖~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(0.625) and 𝑁𝑁𝑖𝑖~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(1.25) for scenarios designed to represent medium and 
high grouse densities.  Observations of grouse at each site i during survey j was simulated by 
drawing randomly from a binomial distribution 𝑦𝑦𝑖𝑖,𝑗𝑗~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝐵𝐵𝐵𝐵(𝑁𝑁𝚤𝚤� ,𝑝𝑝) where the probability of 
detecting a grouse (p) = 0.5. 
We used WinBUGS to analyze our sixteen simulated datasets using the single-season N-mixture 
models in a Bayesian framework (Lunn et al. 2000) and used vague priors for all hyper-
parameters that provided little or no information about the estimated parameters (see S1 for a 
general description of the simulations and model in the BUGS language). We estimated the total 
number of individuals across all sites by summing the estimated number of individuals at each 
survey site.  We ran three chains of length 40,000 after a burn-in period of 10,000 and thinned 
the posterior chains by 100 to ensure independence. We assessed convergence using the Gelman-
Rubin (𝑅𝑅�) statistic, which examines the variance ratio of the Markov chain Monte Carlo 
(MCMC) algorithm within and between chains across iterations (Gelman and Rubin 1992).  We 
accepted parameter estimates when they came from Markov chains with 𝑅𝑅� between 1.0 and 1.01. 
All simulations and analyses were conducted in R computing software (R Core Team 2017). 
Simulations to inform 2020 and 2021 protocols.—Survey results from the pilot season in 2019 
were analyzed using two different statistical methods that accounted for imperfect detection 
(probability of detection < 1): N-mixture models and distance sampling (Kery and Schaub 2012, 
Buckland et al. 2001). We built and evaluated single-season N-mixture models and hierarchical 
distance sampling models with and without incorporating temporary emigration to estimate local 
abundance and detection (Fish and Chandler 2011, R Core Team 2017). 

For the N-mixture models we evaluated potential overdispersion in our observation data by 
evaluating and comparing constant models with different distributions: a Poisson distribution, a 
negative binomial distribution, and a zero-inflated poison distribution. We evaluated the null 
models using Akaike’s Information Criterion (AIC) to determine the model with the most 
support, which we then used for estimating local abundance and probability of detection 
(Burnham and Anderson 2002, Kery and Schaub 2012). We estimated local abundance and 
probability of detection for point counts with playback and point counts without playback for 
both spring and summer surveys separately specifying constant detection and abundance. We 
also pooled all six repeated visits per transect and compared models varying by survey type (with 
and without playback) and estimated local abundance.  



We built and evaluated distance sampling models to estimate grouse densities per km2 and local 
abundance. We used two different types of hierarchical distance sampling models to analyze 
survey point-count and transect-level survey data, one that incorporated temporary emigration 
(hierarchical distance sampling with temporary emigration) and one that did not (hierarchical 
distance sampling; Buckland et al. 2011, Kery and Royle 2016). For the purpose of estimating 
density and local abundance from the pilot study for the hierarchical distance sampling model, 
we treated each visit to a transect as an independent transect in order to have a larger sample 
size; 3 visits to one transect = 3 independent transects. We evaluated this approach using the 
distsamp function within the R package unmarked (Fisk and Chandler 2011, Kery and Royle 
2016, R Core Team 2017). For the second type of hierarchical distance sampling, repeat visits to 
a site allowed us to evaluate temporary emigration or availability of an individual to be detected 
(Kery and Royle 2016). We fit these models using the gdistamp function in the R package 
unmarked (Fisk and Chandler 2011, Kery and Royle 2016, R Core Team 2017). For both types 
of distance sampling, we evaluated constant models (i.e., models that constrain density and 
detection probability to be constant across survey sites).   
Similar to the N-mixture models, we again analyzed the data based on survey method: point 
counts with electronic playback, point counts without electronic playback, and line transects. We 
also pooled the point count surveys from the two survey types (with and without electronic 
playback). For the line transects, we determined the length of transect by the GPS tracks 
collected during the summer surveys. Spring transect length was determined by either the 
average length of its summer survey route, or if the transect was not completed in both spring 
and summer, then the average of all transect lengths was used.  We evaluated each constant 
model with three different realistic detection functions: the half-normal, hazard-rate, and uniform 
(Buckland et al. 2001). Each model set was evaluated using AIC to assess the best model for 
estimating density or local abundance (Burnham and Anderson 2002). 
The models with the most support from each model set from the spring pilot season data were 
then used to estimate detection and local abundance. We assessed a low and high estimate for 
abundance, and an estimate for abundance when point count surveys were conducted with 
electronic playback. The purpose of this was to evaluate the efficacy of our current survey 
methods given a low estimate of abundance, a high estimate of abundance, and an estimate using 
the most effective survey method for point counts.  We then used combinations of these 
estimates in a series of simulations to evaluate the efficacy of the pilot season survey protocols 
analyzed using N-mixture models, and then given the inadequacy of the pilot season protocols 
for the desired level of precision, to evaluate the efficacy of other potential survey protocols.   
Initial simulation sets examined estimates for abundance and detection based upon the 2019 
survey protocol: 3 replicated visits at 100 independent survey sites located off trail. We 
simulated data using a “best case” scenario using an estimate of detection probability, 0.28 ± 
0.10 SE, produced from the N-mixture model for spring point-counts conducted with the use of 
electronic playback, and our high estimate 0.48 ± 0.20 for abundance. After examining the 
results of simulations using the 2019 survey protocol, we then evaluated whether estimator 
precision could be increased by 1) increasing the number of replicate survey visits per point, and 
2) increasing numbers of independent survey points.  
We evaluated simulated model sets based on varying number of visits and varying number of 
independent points. For our first set of simulations, we evaluated simulated datasets based on 
100 independent survey points per region with increasing numbers of replicate visits under the 



“best case” scenario for estimates of detection and abundance. Next, we varied the number of 
visits between 3–9, and the number of survey points from 100–360. For these simulations, 
abundance and detection were based on empirical estimates from the 2019 spring survey effort 
achieved using the estimates from the electronic playback survey methodology; an estimate of 
detection probability of 0.28 ± 0.10 SE, and an estimate of abundance of 0.36 ±  0.13.  
Our simulation approach was like that described for the 2018 simulations. The main difference 
was that these simulations and analyses were conducted in R using the function jags from the 
jagsUI package (Kellner 2019, R Core Team 2017). We used vague priors that provided little 
information about the estimated parameters. We used a standard vague prior (0.005, 0.005) for 
lambda, and a uniform distribution with a minimum of 0 and a maximum of 10 for p (Kery and 
Schaub 2012). We ran three chains of length 40,000 after a burn-in period of 10,000 and thinned 
the posterior chains by 100 to ensure independence. We assessed convergence using the Gelman-
Rubin (𝑅𝑅�) statistic and accepted parameter estimates when they came from Markov chains with 
𝑅𝑅� between 1.0 and 1.1 (Gelman and Rubin 1992, R Core Team 2017).  
Simulations for comparing different protocols and analytical methods.—Using empirical data 
from 2020 and 2021 surveys, we evaluated single-season N-mixture models (Kery and Schaub 
2012) and hierarchical distance sampling models (Kery and Royle 2016) to obtain baseline 
estimates of local abundance and detection within MFWP regions 1–5 for informing different 
scenarios for our simulations. For the N-mixture models we used a Poisson distribution like 
before and examined c-hat from a goodness of fitness test to evaluate for overdispersion. For 
hierarchical distance sampling, we used the first visit to each site, and then evaluated a constant 
model with three different detection functions: half-normal, hazard rate, and uniform (Buckland 
et al. 2001). We used AIC to rank and select the most appropriate detection function for 
estimating local abundance (Burnham and Anderson 2002). We then compared regional 
estimates of local abundance for the two statistical estimators; estimated local abundance was 
similar (see Results) and we used estimated local abundance and detection probability from the 
N-mixture model to inform our simulation scenarios (e.g., low abundance, average abundance, 
and high abundance).  
Based on discussions that occurred in 2018, an acceptable monitoring program should produce 
unbiased estimates of regional abundance with a coefficient of variation of less than 15%. To 
evaluate survey effort required to achieve annual estimates of dusky grouse abundance with a 
coefficient of variation of less than 15%, from point-count and transect survey protocols, we 
developed and modeled simulated datasets based on empirical estimates of abundance and 
detection probabilities from our 2020 and 2021 spring survey effort. We defined average, high, 
and low abundances based on estimates of state-wide abundance, the region with the lowest 
estimated abundance, and the region with the highest estimated abundance. We defined average 
probability of detection as the average state-wide constant detection and high probability of 
detection as the probability of detection under ideal survey conditions. We developed and 
modeled simulated datasets based on six scenarios:  

1. average abundance with average detection,  
2. high abundance with average detection,  
3. low abundance with average detection,  
4. average abundance with high detection,  
5. high abundance with high detection, and  
6. low abundance with high detection.  



We analyzed our simulated data sets using N-mixture models, hierarchical distance sampling, 
hierarchical distance sampling with time removal models, and naïve models with constant 
detection and abundance. For our N-mixture models we varied the number of visits to a site, 
evaluating survey protocols with 2, 3, or 4 visits. For the N-mixture models, hierarchical distance 
sampling and hierarchical distance sampling with time removal we evaluated whether estimator 
precision could be increased by increasing the number of independent survey sites. For our 
simulated survey protocols for point counts, we increased the number of sites visited each time 
by 100 until we achieved unbiased and relatively precise (<15% CV, 90% of the time) estimates 
of population abundance. Once we identified the required number of sites for the desired level of 
precision, we then decreased the number of sites by 20, evaluating the different protocols until 
we no longer had the desired level of precision, after which we increased the number of sites by 
10 to evaluate the midpoint between the thresholds to determine a more precise requisite number 
of sites. For line transects we started with 100 sites, and then as 100 sites was more than 
sufficient for reaching our desired level of precision, we decreased the number of sites from 100 
by 20 until the coefficient of variation was not < 15%, 90% of the time. At that point we then 
increased the number of sites by 10 and then decreased by 5 in order to further narrow down the 
number of sites that need to be visited. We evaluated naïve models using the protocols identified 
to be most effective and logistically feasible. We conducted analyses of our simulated datasets 
using the Bayesian framework. All simulations were conducted in R using the function jags from 
the jagsUI package (Kellner 2019, R Core Team 2021). We assessed convergence using the 
Gelman-Rubin (𝑅𝑅�) statistic and accepted parameter estimates when they came from Markov 
chains with 𝑅𝑅� between 1.0 and 1.1 (Gelman and Rubin 1992, R Core Team 2021). 
For the N-mixture models (S1), the variation in local abundance was described with a Poisson 
distribution, and the variation in detection was described by a binomial random process (Kery 
and Schaub 2012). In addition, to evaluate whether visits could occur on the same day, we tested 
the effects of correlation on the probability of detection and local abundance (S2), with the 
correlation matrix estimated from the 2020 and 2021 point count data. For the simulations, we 
used vague priors that provided little information about the estimated parameters. We used a 
standard vague prior (gamma 0.005, 0.005) for lambda, and a uniform distribution with a 
minimum of 0 and a maximum of 1 for p (Kery and Schaub 2012, Kery and Royle 2016). For the 
non-correlated simulations, we ran three chains of length 5,000 after a burn-in period of 1,000 
and thinned the posterior chains by 1. For the correlated simulations, we ran three chains of 
30,000 after a burn-in period of 100 and thinned the posterior chains by 1.  
For the hierarchical distance sampling models, we used a three-part multinomial, binomial, 
Poisson mixture model as described by Kery and Royle (2016). We evaluated hierarchical 
distance sampling models for both point counts (Appendix 3) and line transect surveys 
(Appendix 4). For the line transect surveys we conducted simulations for transect lengths of 
2,681m (the average transect length) and 5,000m transects. For both the line transect and point 
count simulations we used a uniform prior with a minimum of 0 and a maximum of 100 for 
sigma and a standard vague prior (gamma 0.001, 0.001) for lambda (Kery and Royle 2016). We 
ran three chains of length 5,000 after a burn-in period of 1,000 and thinned the posterior chains 
by 1.  
For the hierarchical distance sampling model with time removal (S5), we use a four part 
hierarchical model as described by Kery and Royle (2016) and Amundson et al (2014). Because 
of the time it took to run these simulations and the logistically unfeasible number of point counts 



needed (> 6,000) for the high abundance, average detection scenario, we chose to only simulate 
and evaluate data under two scenarios: high abundance and average detection, and high 
abundance, high detection. Given previous patterns, the scenarios with high abundance often 
required the lower amounts of survey effort, and we believed that this pattern would hold true for 
this analysis as well. If the needed number of point counts for achieving relative precise 
estimates of population size was already logistically unfeasible with the high abundance 
scenarios, then logically, we assumed that scenarios with average or low abundance would 
require even higher and more logistically unfeasible number of point counts, making hierarchical 
distance sampling with time removal unlikely to be recommended for the creation of a 
population monitoring program. For the simulations we used a standard vague prior (gamma 
0.001, 0.001) for lambda, a uniform prior with a minimum of 0 and a maximum of 100 for 
sigma, and a uniform distribution with a minimum of 0 and a maximum of 1 for pa, which is the 
probability of an individual being detected during any time interval (Kery and Schaub 2012, 
Amundson et al. 2014, Kery and Royle 2016). We ran three chains of length 20,000 after a burn-
in period of 1,000 and thinned the posterior chains by 1. 
We evaluated naïve models (S6) for point counts using only 1 visit and basing the number of 
sites visited on the ‘best’ survey protocol out of the other three model types. For the simulations, 
we used a vague prior for lambda (gamma 0.005, 0.005). We ran three chains of length 3,000 
after a burn-in period of 100 and thinned the posterior chains by 1.  
We quantified bias and coefficient of variation the same way we did before, except this time we 
ran 500 iterations of each data simulation and subsequent analysis from those iterations. We 
calculated the difference between the estimated local abundance (N�i) and the true abundance 
known for the simulated site (Ni). Similarly, we quantified bias in the total estimated population 
size by calculating the difference between Total N� estimated as ∑N�i and the true known total 
abundance for all sites (∑Ni). We quantified bias in detection probability using N-mixture 
models by calculating the difference between the estimated probability of detection and the true 
probability of detection defined for each simulation. For the hierarchical distance sampling 
models, we quantified bias in sigma by calculating the difference between the estimated sigma 
and the true sigma defined for each simulation. For the hierarchical distance sampling with time 
removal, we quantified bias for availability by calculating the difference between the estimated 
availability parameter, PHImean (mean availability across sites), and the true availability defined 
for each simulation. We compared the posterior distributions of the mean differences between 
each estimate and the true values across all 500 simulations to evaluate the bias of each estimate. 
We considered an estimate to be clearly biased if the 95% credible interval (CrI) of the 
differences (truth-estimates) did not include 0. In addition, at each of the 500 iterations, we 
estimated the precision of the total estimated population size estimate by calculating the 
coefficient of variation (CV =  estimated standard error

mean parameter estimate
).  We evaluated the posterior distributions 

of the 500 derived CV estimates to determine whether survey protocols yielded acceptable levels 
of precision for average local abundance and total population size.  We estimated probability that 
the average coefficient of variation would meet the manager-determined threshold of 15% by 
calculating the proportion of the total posterior distribution density greater than 0.15, with a goal 
of meeting that threshold ≥ 90% of the time. 
Results 



Evaluation of field survey protocols.—We surveyed 90 and 110 sites in the spring and summer of 
the pilot season in 2019, respectively. Most (98%) sites during each sampling period were 
surveyed three times. Survey effort during the spring sampling period was concentrated at the 
end of the sampling period when accessibility was highest versus in the summer when sampling 
was more evenly spread out across the sampling period (Figure 7). In total (including point count 
and transect data), we had 108 and 36 total dusky grouse detections during the spring and 
summer sampling periods, respectively (Table 6). Estimates of local abundance for both the N-
mixture and distance sampling models had much lower precision for summer surveys than spring 
surveys suggesting low utility of summer point-count surveys (Tables 8, 9).   
For point counts for both spring and summer data for 2019 for the N-mixture models, models 
with Poisson distributions were most supported, indicating no overdispersion (Tables 10, 11). 
Estimated probability of detection was greater when electronic playback during the spring was 
used (0.28; 95% CI: 0.13, 0.50) versus when not used (0.09; 95% CI: 0.01, 0.48; Figure 8). 
During the summer when the point count data was pooled for surveys with and without playback 
calls, a constant model for detection was supported, suggesting that the use of electronic 
playback during the summer surveys did not improve the probability of detecting dusky grouse 
(Table 11). Similar results were found for both hierarchical distance sampling methods where 
playback had an effect during the spring and did not have an effect during summer surveys 
(Tables 12, 13, 14, 15). For both hierarchical distance sampling methods a half-normal detection 
function was most supported (Tables 12, 13, 14, 15).   
Over 2020 and 2021 we conducted 3,292 sets of points counts (each set varying between 1-4 
repeat visits) across 2,372 sites with some sites surveyed in both 2020 and 2021 for a total 
12,492 point counts. We used point count sets with complete data (4 visits, complete covariates) 
for the N-mixture models resulting 3,123 point count sets across 2,286 sites. For the hierarchical 
distance sampling models we also used complete datasets, which is this case referred to complete 
covariates for visit 1 and distance data, resulting in 3,234 point counts across 2,349 sites. For the 
line transects we walked 551 transects, surveying each transect twice. We again only used 
transects that we had complete information for, which in this case was transect length, and 
totaled 514 transects. 
We used N-mixture models to estimate probability of detection and local abundance for different 
route types. Spring 2019 data was used to estimate off-trail abundance and 2020 and 2021 were 
used to estimate trail and road local abundance and detection. Local abundance was higher off-
trail than on trails or roads, with abundances for 2020 and 2021 not significantly different from 
each other (Table 16, Figure 9). Detection was not significantly different most likely due a small 
sample size for off-trail point-counts across off-trail, road, and trail transects, though there was a 
slight trend where detection was higher on roads and trails versus off-trail transects (Table 17, 
Figure 10). 
Identifying ideal survey conditions.—For N-mixture models, we found model support was 
highest for a quadratic relationship between probability of detection and day of the survey season 
and minutes from sunrise, but not for temperature (Table 18). We found support for the effects of 
noise level, minutes from sunrise, day since sampling period started, and cloud cover on the 
probability of detection of dusky grouse, as well as slight potential impacts from wind, 
temperature, and precipitation (Figure 11). Detection was highest on clear days and lowest when 
it was raining (Table 19, Figure 11, 12). Higher detection of dusky grouse was slightly positively 
associated with temperature (β = 0.12, 95% CI: -0.02, 0.25) and slightly negatively associated 



with wind speed (β = -0.07, 95% CI: -0.18, 0.04). Probability of detecting a dusky grouse had a 
nonlinear quadratic relationship with both minutes since sunrise (β = 0.41, 95% CI: 0.02, 0.81, β 
= -0.73, 95% CI: -1.14, -0.31) and day since the sampling period started (β = 1.29, 95% CI: 0.56, 
2.02, β = -1.25, 95% CI: -1.97, -0.54; Table 19). Probability of detection was highest at 86 
minutes post-sunrise and on day 34 (May 13th) during the sampling period (Figure 13). 
The relationships between survey conditions and detection (sigma and availability) were similar 
for the hierarchical distance sampling model for point counts and the hierarchical distance 
sampling model with time removal. Unlike the N-mixture models, while evaluating the effects of 
survey conditions on sigma we only found strong support for day since sampling period started 
to have a nonlinear quadratic relationship with sigma for both models (Tables 20, 21). Both 
minutes from sunrise and temperature had similar support for quadratic and linear relationships, 
and we choose to use the relationship from the most parsimonious model (Tables 20, 21). The 
change in response for minutes from sunrise from that found when evaluating the N-mixture 
models could be an impact of only using the first visit out of four in the hierarchical distance 
sampling models, and that the first visit generally occurred earlier in the day than the later visits 
also incorporated into the N-mixture model. For hierarchical distance sampling, we found 
support for the effects of cloud cover, noise level, and day since sampling period started on 
sigma (Figure 14). We found that for hierarchical distance sampling higher sigma was associated 
with days with less cloud cover, and a quadratic relationship with days since the sampling period 
started (β = 0.57, 95% CI: 0.20, 0.95, β = -0.62, 95% CI: -0.99, -0.24; Table 22, Figure 14). For 
hierarchical distance sampling with time removal, availability was most strongly associated with 
a quadratic relationship with days since the sampling period started (β = 2.62, 95% CI: 1.18, 
4.07, β = -2.65, 95% CI: -4.05, -1.26) and sigma was associated with decreased noise level 
(Table 23, Figures 15, 16). We did not record transect-level survey conditions and so we did not 
evaluate the impact of survey conditions with the exception of day during the sampling period 
for hierarchical distance sampling for line transects. We found that similar to the other 
hierarchical distance sampling models, we found support for day since sampling period started to 
have a nonlinear quadratic relationship with sigma (β  = 1.04, 95% CI: 0.47, 1.61, β = -1.13, 95% 
CI: -1.71, -0.56; Table 25). For the hierarchical distance sampling model for point counts, sigma 
was highest on day 31 (May 10th), for hierarchical distance sampling for line transects, sigma 
was highest on day 30 (May 9th), and for hierarchical distance sampling with time removal, 
availability was highest on day 33 (May 12th; Figure 13). 
Simulations 
Simulations to inform 2019 survey protocols.—Results of our simulations revealed that 3 
replicate surveys at each of 100 independent survey sites yielded unbiased and relatively precise 
(≤15% CV) indices of regional population abundance when site-specific abundance was at least 
0.625 grouse (Table 26). For example, the mean difference between true and estimated local 
abundance was 0.02 (95% CrI: -0.13 – 0.19) when 100 independent sites were each surveyed 3 
times and the average local abundance was 0.625 grouse. The N-mixture model yielded unbiased 
estimates of total abundance for all other scenarios as well (Table 26). Precision associated with 
estimates of local abundance and total population size (summed site-specific estimated 
abundance;∑𝑁𝑁�𝑖𝑖) increased with the number of sites surveyed as well as the number of replicate 
visits per site (Table 26). For example, the CV from 400 simulation runs averaged 0.09 (95% 
CrI: 0.6–0.14) when 100 sites were each surveyed 3 times (when λ = 1.25, p = 0.5); the 
probability that the CV ≥ 0.15 was 0.02. When average local abundance was half as high (λ = 



0.625), the average CV of the total population size estimate was 0.13 (95% CrI: 0.07–0.16) and 
the probability that CV ≥ 0.15 was 0.09 under the same survey protocols (100 sites, 3 visits). As 
expected, reducing the number of replicate survey visits per site from 3 to 2 reduced precision. 
An average CV ≤ 0.15 was only achieved when the number of survey sites was increased from 
100 to 500 (Table 26). From this we concluded that for our pilot season, a survey design where 
100 sites were each surveyed 3 times during a period of population closure was the most efficient 
protocol for meeting management objectives relative to annual monitoring region-specific dusky 
grouse populations.   
Simulations to inform 2020 and 2021 protocols.—For the N-mixture models, we found little 
evidence that observation data from point-count surveys were overdispersed (Table 10) and used 
Poisson distributions for all subsequent N-mixture models based on point counts.  However, we 
did find support for the use of negative binominal distributions when using counts pooled across 
transects, suggesting potential overdispersion at the transect level (Table 10). We estimated local 
abundance during the spring season while holding the estimated probability of detection 
constant. For spring point counts where electronic playback was used, estimated mean local 
abundance was 0.36 (95% CI: 0.18–0.73) grouse (Table 8). Estimates from summer point counts 
had low precision as a result of a few grouse observations.  
For the hierarchical distance sampling models (with and without temporary emigration) we 
found the half-normal detection to be most supported (Tables 12, 13). We then used the top 
models to estimate the number of dusky grouse per km2 and the local abundance of dusky grouse 
in the area surveyed (~ 0.03 km2 ; Table 8). For the spring, using hierarchical distance sampling 
methods that did not incorporate temporary emigration, estimates of local abundance from point 
count data varied from 0.13 (95% CI: 0.05–0.31) when electronic playback was not used to 0.20 
(95% CI: 0.10–0.38) when electronic playback was used to 0.22 (95% CI: 0.09, 0.56) when all 
point count data was pooled (Table 8). Using hierarchical distance sampling methods where 
temporary emigration was incorporated, estimates of local abundance from point count data 
varied from 0.40 (95% CI: 0.18, 0.86) for point counts conducted with electronic playback to 
0.48 (95% CI: 0.21, 1.07) when all point count data was pooled (Table 8). Estimates from point 
counts where electronic playback was not used had low precision (Table 8).  
We used empirical estimates for detection and abundance from the spring 2019 survey data to 
evaluate the efficacy of a variety of survey protocols. For the all simulations, we used an 
estimate of detection probability, 0.28 (95% CI: 0.13, 0.50), produced from the N-mixture model 
for point counts conducted with the use of electronic playback. For the first set of simulations for 
our estimates of abundance we used a low estimate of 0.17 (95% CI: 0.06, 0.48) and a high 
estimate of 0.48 (95% CI: 0.21, 1.07) from when the point count data was pooled, and an 
estimate of 0.36 (95% CI: 0.18, 0.73) which was from the N-mixture model where point counts 
were conducted with electronic playback. Results from the simulations evaluating the efficacy of 
2019’s survey effort yielded relatively imprecise estimates where the probability that >15 % CV 
was around 1 (Table 27). Using the high abundance estimate we then evaluated many sites would 
need to be visited if we kept the number of visits at 3 and how many visits would be needed if 
we kept the number of sites at 100. Our simulations indicated that replicate surveys at each of 
500 independent sites would yield unbiased and relatively precise (<15% CV) indices of regional 
population abundance if site specific abundance is closer to our high estimate of 0.48 birds per 
survey point (Table 27). If only 100 independent sites are surveyed, a minimum of 8 replicate 



visits would be needed to yield unbiased and relatively precise (< 15%) indices of regional 
population abundance (Table 27). 
For our second set of simulations we used an estimate of detection, 0.28 (95% CI: 0.13, 0.50), 
and an estimate of abundance, 0.36 (95% CI: 0.18, 0.73), produced from the N-mixture model 
for point counts conducted with electronic playback. We varied the number of independent sites 
from 100 to 360, and the number of replicate visits from 3 to 9. The models for many of these 
potential protocols produced convergence errors for site-level abundance estimates. Protocols 
that yielded unbiased and relatively precise (<15% CV) indices of regional population abundance 
while having relatively few convergence errors were 200 independent sites with 6 replicate 
visits, 300 independent sites with 4 replicate visits, and 360 independent sites with 4 replicate 
visits (Table 28).  
To examine the feasibility of each of these potential protocols that yielded relatively precise 
results, we calculated how many survey mornings would be needed if we had 5 or 6 points per 
transect, and 3 or 4 replicates occurring in one morning. We calculated that if we conducted 
surveys at 200 independent sites with 6 replicate visits, we would need 68–80 mornings to reach 
our survey goals. If we conducted surveys at 300 independent sites with 4 replicate visits, we 
would need 50–60 mornings, and if we conducted surveys at 360 independent sites with 4 
replicate visits, we would need 60–72 mornings. From this, we recommended a survey protocol 
of 360 independent sites with 6 survey points per transect and 4 replicate visits for the Spring 
2020 and 2021 field seasons for each FWP region with dusky grouse habitat.  
Simulations for comparing different protocols and analytical methods.—For the hierarchical 
distance sampling for point-counts we found that the half-normal detection function best fit our 
data (Table 29). We evaluated models where detection was constant and local abundance was 
constant to obtain average state-wide estimates of abundance. For the N-mixture models we used 
a Poisson distribution as the data did not appear overdispersed (c-hat = 1.4). Average local 
abundance was 0.18 (95% CI: 0.17, 0.20) dusky grouse for the N-mixture model and for the 
hierarchical distance models average abundance was 0.20 (95% CI: 0.16, 0.24). To obtain 
regional local abundance estimates we evaluated models where detection was constant and 
abundance varied by MFWP administrative region for the hierarchical distance sampling and N-
mixture models. Local abundance estimates were similar across the N-mixture and distance 
sampling models (Figure 17). Estimated abundance estimates were lowest for FWP Region 4, 
where the N-mixture model estimated a local abundance of 0.08 (95% CI: 0.06, 0.11) and the 
hierarchical distance sampling model estimated a local abundance of 0.07 (95% CI: 0.04, 0.12; 
Tables 30, 31). Estimated abundance was greatest in MFWP Region 2, where the N-mixture 
model estimated a local abundance of 0.31 (95% CI: 0.27, 0.37) and the hierarchical distance 
sampling model estimated a local abundance of 0.36 (95% CI: 0.27, 0.47; Tables 30, 31). 
Because the N-mixture models on average produced more precise estimates of local abundance, 
we chose to use the estimates from the N-mixture models to inform our simulation scenarios; we 
used a low local abundance of 0.08, an average local abundance of 0.18, and a high local 
abundance of 0.31 (Table 32).  
We evaluated three different detection functions for the transect data, both for visit 1 and for visit 
2. For visit 1, both the hazard-rate and half-normal had support and had similar abundance 
estimates (Table 33, Figure 18). For visit 2, the half-normal was most supported because the 
hazard-rate model was unable to converge and produced unrealistically high abundance 
estimates (for average abundance estimated 43 dusky grouse per transect; Table 34). For these 



reasons, we chose to use a half-normal detection function to generate our simulated data and to 
analyze it. To inform our abundance estimates, we extrapolated the estimated abundance per 
transect from the abundance estimates from the N-mixture models for the point counts. Those 
estimates were higher than the estimates extrapolated from the line transect data itself.  
To examine the probability of detection estimated using N-mixture models under ideal 
conditions, we held cloud cover at 0-15%, precipitation at none, noise level at 0, wind at 0, 
temperature at 7.0ºC (the average temperature), and minutes from sunrise at 86 (max detection). 
We examined how probability of detection varied across days and found that probability of 
detection was highest at 34 days (0. 57 (95% CI: 0.52, 0.62, Figure 13). We concluded that under 
ideal conditions, to inform our scenarios, probability of detection was 0.57 (95% CI: 0.52, 0.62) 
for our simulated data evaluated using N-mixture models (Table 32). 
To estimate sigma using hierarchical distance models for point counts under ideal survey 
conditions, we held cloud cover at 0-15%, precipitation at none, wind speed at 0, noise level at 0, 
temperature at 7.0ºC (average temp), and at 297 minutes post sunrise (max detection). Like 
before, we examined how sigma varied across day under ideal survey conditions and found that 
sigma was highest at 31 days with a sigma of 58 (Figure 13). Therefore, we used σ = 58 (95% 
CI: 38.40, 86.39) to inform our simulated scenarios (Table 32).     
For the hierarchical distance sampling model for transects, average sigma was estimated to be 42 
(Table 32). As we didn’t have transect level covariates for weather conditions, for high detection 
we examined the effects of day since sampling period started on sigma. Sigma was highest on 
day 30 with a sigma of 51 (95% CI: 41.87, 61.30; Table 32). 
For the hierarchical distance sampling with time removal model, average sigma (for a half-
normal detection function) was estimated to be 43 and availability was estimated to be 0.65. We 
examined the effects of day since sampling period started, minutes from sunrise, cloud cover, 
precipitation, temperature, and wind on probability of availability and the effect of noise level on 
sigma (the detection function). To estimate sigma and availability under ideal conditions, for 
availability we held cloud cover at 0-15%, precipitation at none, temperature at 7°C, wind at 0, 
minutes since sunrise at max (297 minutes), and varied across day, and for sigma we held noise 
level at 0. We found that availability was highest at 33 days with a probability of availability of 
0.89, and sigma was 48, and we therefore used those values in our high detection scenarios 
(Table 32). 
Hierarchical distance sampling with time removal required a logistically unfeasible number of 
point counts for the high abundance average detection scenario (> 6,000) which suggests low 
utility for this method (Table S7, Figure 19). Even with high detection, hierarchical distance 
sampling with time removal still required the most amount of sites visited out of all the methods 
for that scenario (Figure 20). For example 1,390 sites vs 800 for hierarchical distance sampling 
or 60 for N-mixture models for the high abundance, high detection scenario (Tables S7, S8, S9).   
The survey protocols that allowed us to obtain our desired level of precision (≤15% CV) were 
unbiased across the hierarchical distance sampling (point count and transect), N-mixture models, 
and hierarchical distance sampling with time removal models, but not for the naïve models 
(Figures 21, 22, 23). This highlights the importance of using an unbiased estimator that takes 
imperfect detection into account to estimate abundance.  



For point counts, a general trend existed where protocols for hierarchical distance sampling and 
hierarchical distance sampling with time removal required the most number of sites visited, 
while protocols for N-mixture models with four visits required the least (Table 35, Figure 19, 
Figure 20). Under simulated conditions of high abundance (𝑁𝑁� = 0.31 grouse per survey point) 
and average detection (�̅�𝑝 = 0.37, σ = 43, availability = 0.65 and σ = 43), 170 survey sites would 
need to be surveyed 4 times to obtain acceptably precise estimates of population size evaluated 
using an N-mixture model, 1,090 sites using hierarchical distance sampling or > 6,000 sites for 
hierarchical distance sampling with time removal (Table 35). This same trend of N-mixture 
models where sites were visited 4 times requiring less survey effort than the other point count 
methods holds true over all six scenarios (Figure 19, Figure 20). The least amount of survey 
effort required to obtain the desired level of precision for population size estimates under average 
abundance (𝑁𝑁� = 0.18 grouse per survey point) and average detection (�̅�𝑝 = 0.31) is 240 sites 
visited 4 times for a total of 960 point-counts (Table 35). Under low abundance (𝑁𝑁� = 0.08 grouse 
per survey point) and average detection (�̅�𝑝 = 0.31) it is 490 sites, visited 4 times for a total of 
1,960 point-counts (Table 35). Under periods of high probability of detection, the requisite 
number of point counts greatly decreased. Under high abundance (𝑁𝑁� = 0.37 grouse per survey 
point), high detection (�̅�𝑝 = 0.59)  it is 60 sites, visited 4 times for 240 total point-counts (Table 
35). Under average abundance (𝑁𝑁� = 0.18 grouse per survey point), high detection (�̅�𝑝 = 0.59)  it is 
80 sites visited 4 times for a total of 320 point-counts, and under low abundance (𝑁𝑁� = 0.08 
grouse per survey point), high detection (�̅�𝑝 = 0.59) it is 140 sites visited 4 times for a total of 560 
point-counts (Table 35). 
If the four visits for each site required by the N-mixture models are able to be completed in one 
day, it reduces the time and effort for completing the surveys by making it so a site only has to 
be visited over one morning. When point counts are conducted back-to-back or on the same day, 
there can be correlation between the counts. To evaluate whether visits could occur on the same 
day, we tested the effects of correlation on the probability of detection and abundance estimates. 
We evaluated correlation between the counts for the 2020 and 2021 surveys. On average the 
back-to-back point counts were 67% correlated, while the other point counts were ~44% 
correlated (Table 35). We used this correlation matrix to simulate correlated data to evaluate the 
impacts of bias on the abundance estimates. When the true probability of detection was >57%, 
the proposed sampling effort and protocol produced unbiased estimates of detection and local 
abundance (Table 36, Figure 24). However, we found modest upward (high) bias in detection 
probability (+ 10%) and low bias in local abundance (-0.04 birds per survey area) when detection 
rates are below 37% (Table 36, Figure 24). In short, conducting 4 replicated surveys on the same 
survey route in the same day will not result in meaningful bias on estimated abundance if surveys 
are conducted during periods of high detection. 
We simulated data for transects that were 2,681m (the average transect length) and 5,000m. We 
found that under high abundance, average detection 25 transects needed to be surveyed for 
2,681m transects and 15 for 5,000m transects (Tables S10, S11). Under average abundance and 
average detection 40 transects need to be surveyed for the 2,681m transect and 25 for the 5,000m 
transect (Tables S10, S11). This pattern where the 5,000m transect requires less transects than 
the 2,681m holds true across all the scenarios (Figure 25). Under high detection high abundance, 
the 2,681m transect only requires 20 transects to be visited, while the 5,000m transect requires 
15 (Tables S10, S11). Under high detection, average abundance, the 2,681m transect requires 35 
transects and the 5,000m transect requires 20 (Tables S10, S11).  



Walking a transect and using hierarchical distance sampling requires similar amounts of effort 
compared to point counts analyzed using N-mixture models with point counts analyzed using N-
mixture models requiring fewer transects but more visits (which can occur on the same day) and 
walking transects requiring 2-3x more transects but only 1 visit. Overall, both types of surveys 
can occur in a single morning, but the point counts take a longer time than walking a transect. 
Both methods require feasible amounts of effort if surveys occur during periods of high 
detection. To increase the probability of detecting dusky grouse we recommend surveying during 
times of peak breeding activity and under ideal weather conditions. Peak breeding activity occurs 
approximately May 5–May 25 and from sunrise to approximately 9:30am. Ideal weather 
conditions are days with little to no wind, little to no cloud cover, no precipitation (including 
fog), and slighter warmer temperatures, though temperature is less important than cloud cover or 
wind. We also recommend surveying on transects with limited background noise from either 
artificial or natural (rivers) sources. Overall we recommend conducting point count surveys 
using electronic playback to increase detection and analyzing the data using N-mixture models.  
Power Analysis 
Survey protocols that yielded ≤ 15% CV in annual estimates of abundance did not have power to 
detect a 1% annual decline in abundance over 10 years but did have power (≥ 80%) to detect a 
3% and 5% annual decline (Table 37). Over 5 years, we had power (≥ 80%) to detect a 10% 
annual decline (Table 37). The average slope was close (within 0.08–1.08) to the target trend for 
each combination of year and annual decline (Table 38). A negative trend was predicted over 
70% of the time for all combinations of 3%, 5%, and 10% annual declines, and after 5 years for a 
1% annual decline (Tables 39). On average across the different scenarios the difference between 
the annual trends estimated using the estimated abundance and the true abundance was small 
(Table 40). 
Objective 3: Develop methods that facilitate rigorous and cost-effective evaluations of 
grouse-habitat relationships and the effects of management (e.g. timber harvest) 
Methods 
We conducted a series of statistical simulations to evaluate the efficacy of potential survey 
protocols to evaluate the associations between dusky grouse abundance and habitat conditions or 
management actions (e.g. effects of timber harvest or beetle-kill, S12, S13). Simulation scenarios 
were the same as those in Objective 2 and included: high abundance with average detection, 
average abundance with average detection, low abundance with average detection, high 
abundance with high detection, average abundance with high detection, and low abundance with 
high detection. For each scenario, we tested the top protocol as a result of the previous 
simulations in objective 2 for the N-mixture models for point counts and the hierarchical distance 
sampling models for line transects with a length of 2,681m, both of which had protocols that did 
not require unrealistic levels of survey effort.  
The simulated habitat covariate (X) was distributed as a uniform random variable ranging from -
1 to 1. The first set of scenarios included a relatively strong effect of the habitat covariate (X) on 
local abundance (𝜆𝜆 =  exp(log (𝑒𝑒𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖𝑠𝑠𝑎𝑎𝑜𝑜 𝜆𝜆)−1∗𝑋𝑋)) where original 𝜆𝜆 is the high (0.31), average 
(0.18), or low (0.08) local abundances estimated using 2020 and 2021 field data. In the second 
set of scenarios we included a weaker, but still negative effect of the habitat covariate on local 
abundance (𝜆𝜆 =  exp(log (𝑒𝑒𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖𝑠𝑠𝑎𝑎𝑜𝑜 𝜆𝜆)−0.5∗𝑋𝑋)). Within each set of scenarios, we had average 
probability of detection (0.37) and high probability of detection (0.57). We evaluated bias and 



CV of total population size (as described in Objective 2), as well as bias in the model parameters 
related to the habitat covariate. We considered a sampling protocol to provide unbiased estimates 
if the 95% credible interval overlapped 0.  
We ran 500 iterations of each data simulation. We used jags and R to analyze the N-mixture and 
hierarchical distance sampling model in a Bayesian framework. We used vague priors for all 
parameters that provided little to no information about the estimated parameters. We ran three 
chains of length 5,000 after a burn-in period of 1,000, and thinned the posterior chains by 1. We 
assessed convergence using the Gelman-Rubin (R�) statistic and accepted parameter estimates 
when they came from Markov chains with R� between 1.0 and 1.1.  
Results 
All scenarios yielded unbiased estimates of total population size and unbiased estimates of effect 
size of the site covariate (Tables 41, 42, Figure 26). The different sampling protocols also 
yielded acceptable levels of precision for total population size estimates (CV < 15%; Tables 41, 
42)). This indicates that the protocols (number of sites and visits) recommended in objective 2 
are sufficient for evaluating the effect of habitat conditions or management actions on the 
abundance of dusky grouse. 
 
 
 
 
  



Table 1. Description of variables used to create a forest layer for Montana. Information taken from EVT_descriptions table 
LANDFIRE 2021). The vegetation lifeform for all variables is Tree.  

EVT code  
(ecological 
systems) 

Existing Vegetation Type 
 (ecological systems name) 

Vegetation  
Physiognomy 

Collapsed Vegetation  
Type Name 

7010 Northern Rocky Mountain Western Larch Savanna Conifer Western Larch Forest and Woodland 

7045 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest Conifer Douglas-fir-Ponderosa Pine-Lodgepole Pine 
Forest and Woodland 

7046 Northern Rocky Mountain Subalpine Woodland and Parkland Conifer Subalpine Woodland and Parkland 

7047 Northern Rocky Mountain Mesic Montane Mixed Conifer Forest Conifer Douglas-fir-Grand Fir-White Fir Forest and 
Woodland 

7049 Rocky Mountain Foothill Limber Pine-Juniper Woodland Conifer Limber Pine Woodland 
7050 Rocky Mountain Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 
7053 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna Conifer Ponderosa Pine Forest, Woodland and Savanna 
7055 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 
7056 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 
7057 Rocky Mountain Subalpine-Montane Limber-Bristlecone Pine Woodland Conifer Limber Pine Woodland 
7062 Inter-Mountain Basins Curl-leaf Mountain Mahogany Woodland Conifer Mountain Mahogany Woodland and Shrubland 
7165 Northern Rocky Mountain Foothill Conifer Wooded Steppe Conifer Douglas-fir Forest and Woodland 
7166 Middle Rocky Mountain Montane Douglas-fir Forest and Woodland Conifer Douglas-fir Forest and Woodland 
7167 Rocky Mountain Poor-Site Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 

7179 Northwestern Great Plains-Black Hills Ponderosa Pine Woodland and 
Savanna Conifer Ponderosa Pine Forest, Woodland and Savanna 

7193 Recently Logged-Tree Cover Conifer Transitional Forest Vegetation 
7197 Recently Burned-Tree Cover Conifer Transitional Forest Vegetation 
7200 Recently Disturbed Other-Tree Cover Conifer Transitional Forest Vegetation 
7061 Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland Conifer-Hardwood Aspen-Mixed Conifer Forest and Woodland 
7009 Northwestern Great Plains Aspen Forest and Parkland Hardwood Aspen Forest, Woodland, and Parkland 
7011 Rocky Mountain Aspen Forest and Woodland Hardwood Aspen Forest, Woodland, and Parkland 
7161 Northern Rocky Mountain Conifer Swamp Riparian Spruce-Fir Forest and Woodland 
9019 Rocky Mountain Lower Montane-Foothill Riparian Woodland Riparian Western Riparian Woodland and Shrubland 
9022 Rocky Mountain Subalpine-Montane Riparian Woodland Riparian Western Riparian Woodland and Shrubland 

 



Table 2. Definitions for variables in final model for predicting dusky grouse occurrence. 

Variable EVT code Definition Vegetation 
Physiognomy 

Relationship 
Form Direction 

Distance to Road N/A Average distance to nearest road (km) within a circle 
with a 250m radii N/A linear Negative 

Slope N/A Average slope within a circle with a 250m radii N/A linear positive 

Distance to stream N/A Average distance to nearest stream (km) within a circle 
with a 250m radii N/A nonlinear: 

quadratic 
positive,  

then negative 
Foothill Conifer 
Wooded Steppe EVT 7165 Proportion of northern rocky mountain foothill conifer 

wooded steppe within a circle with a 250m radii Conifer nonlinear: 
quadratic 

positive,  
then negative 

Montane Sagebrush 
Steppe EVT 7126 Proportion of inter-mountain basins montane sagebrush 

steppe within a circle with a 250m radii Shrubland nonlinear: pseudo-
linear threshold positive 

Tree Height 1–5m N/A Proportion of trees with a height of 1–5m within a circle 
with a 250m radii N/A nonlinear: pseudo-

linear threshold negative 

Tree Height 16–20m N/A Proportion of trees with a height of 16–20m within a 
circle with a 250m radii N/A nonlinear: pseudo-

linear threshold positive 

   



Table 3. Slope estimates for all terms in the final habitat model. 

Variable Estimated slope 
(βi) 

95% Confidence 
Interval 

Distance to Road -0.31 -0.58– -0.03 
Distance to Stream 7.40 3.26–11.53 
Distance to Stream2 -7.49 -12.79– -2.19 
Foothill Conifer Wooded Steppe 216.70 152.32–281.03 
Foothill Conifer Wooded Steppe2 -5557.00 -5826.86– -5287.36 
ln(Slope + 0.001) 1.03 0.52–1.54 
ln(Montane Sagebrush Steppe + 0.001) 0.16 0.05–0.27 
ln(Tree Height 1–5m + 0.001) -0.68 -1.14– -0.22 
ln(Tree Height 16–20m + 0.001) 0.32 0.15–0.48 

 

Table 4. Percent of simulated data correctly classified for all of Montana and each MFWP region 
for the independent dataset. Percent correctly classified is calculated with 95% confidence 
intervals for the three models: resource selection function model (RSF), random forest model 
(RF), and the ensemble model.  

Area RSF Model RF Model Ensemble Model 
Montana 77.7 (95% CI: 74.7, 81.2) 93.8 (95% CI: 92.2, 95.5) 96.9 (95% CI: 96.1, 98.1) 
Region 1 96.2 (95% CI: 95.0, 100) 100 (95% CI: 100, 100) 100 (95% CI: 100, 100) 
Region 2 85.6 (95% CI: 81.3, 93.8) 100 (95% CI: 100, 100) 100 (95% CI: 100, 100) 
Region 3 87.2 (95% CI: 83.8, 91.2) 94.3 (95% CI: 92.6, 97.1) 96.5 (95% CI: 95.6, 98.5) 
Region 4 83.6 (95% CI: 77.8, 100) 100 (95% CI: 100, 100) 100 (95% CI: 100, 100) 
Region 5 45.9 (95% CI: 37.8, 51.4) 87.3 (95% CI: 83.8, 91.9) 93.7 (95% CI: 91.9, 97.3) 

 

 



Table 5. Estimated area (km2) of potential Dusky Grouse habitat for Montana FWP 
administrative regions for the 3 predictive maps. The RSF and RF models are divided into a 
binary map of habitat and non-habitat based on the 60% quantile, while the ensemble map is 
based on an ensemble frequency histogram where consensus between the models on predicted 
habitat resulted in high relative probability of use and areas of unagreed upon predicted habitat 
between the RSF and RF models resulted in medium-high relative probability of use, and 
consensus between the models on predicted non-habitat resulted in non-habitat. 

Region 
RSF: 
Non-

Habitat 

RSF:  
 Habitat 

RF: 
Non-

Habitat 

RF:  
Habitat 

E: 
Non-

Habitat 

E:  
Med. High 

E.: 
High 

E: Total  
Habitat 

Region 1 9489 25045 5402 29133 4714 5463 24357 29821 
Region 2 7112 20195 4498 22809 4073 3464 19770 23234 
Region 3 22589 27509 22669 27429 19077 7104 23917 31021 
Region 4 60602 10725 55435 15892 54751 6535 10041 16576 
Region 5 40171 5456 39471 6157 38538 2566 4524 7089 
Region 6 71873 581 71590 865 71459 544 451 995 
Region 7 78732 351 78944 139 78694 289 100 390 

Total 290570 89862 278008 102423 271306 25966 83160 109125 
 

Table 6. Total dusky grouse detections during the 2019 pilot season when playback calls were 
and were not used. Transect refers to all grouse detections that occurred while walking the 
transect that did not occur during a point count.  

Period Detected Spring Summer 
Without playback 15 4 
With playback 27 4 
Transect 66 28 
Total Detected 108 36 

 



Table 8. Parameter estimates for local abundance (lambda) and probability of detection (p) for spring 2019 pilot season dusky grouse 
survey data for point counts with and without electronic playback and when point count data was pooled. Poisson distribution is used for 
all N-mixture models. A half-normal detection was used for the distanced sampling models when the data was not pooled and a hazard-rate 
detection function when the data was pooled. For models for the pooled data local abundance was held constant and detection varied by 
survey method (with or without electronic playback). 

Model Local 
abundance 95 % CI p 95 % CI 

Point counts without electronic playback: 3 visits per site    
N-mixture model 0.60 (0.08, 4.29) 0.09 (0.01, 0.48) 
Hierarchical distance sampling  0.13 (0.05, 0.31) - - 
Hierarchical distance sampling with temporary emigration 2.19 (0, 1235) - - 
     
Point counts with electronic playback: 3 visits per site    
N-mixture model 0.36 (0.18, 0.73) 0.28 (0.13, 0.50) 
Hierarchical distance sampling  0.20 (0.10, 0.38) - - 
Hierarchical distance sampling with temporary emigration 0.40 (0.18, 0.86) - - 
     
Point count data pooled: 6 visits per site     
N-mixture model 0.40 (0.21, 0.77) - - 
Hierarchical distance sampling 0.22 (0.09, 0.56) - - 
Hierarchical distance sampling with temporary emigration 0.48 (0.21, 1.07) - - 

 

 

 

 

 

 

 



Table 9. Parameter estimates for local abundance (lambda) and probability of detection (p) for summer 2019 pilot season dusky grouse 
survey data for point counts with and without electronic playback and when point count data was pooled. Poisson distribution is used for 
all N-mixture models. A half-normal detection was used for the distanced sampling models when the data was not pooled and a hazard-rate 
detection function when the data was pooled. For models for the pooled data local abundance and detection were held constant. 

Model Local 
abundance 95 % CI p 95 % CI 

Point counts without electronic playback: 3 visits per site    
N-mixture model 52.6 (0, 3.00e+28) 0.00 (0, 1) 
Hierarchical distance sampling  0.22 (0.06, 1.29) - - 
Hierarchical distance sampling with temporary emigration 27.6 (0, 3.12e+24) - - 
     
Point counts with electronic playback: 3 visits per site    
N-mixture model 55.9 (0, 1.02e+13) 0.00 (0, 1) 
Hierarchical distance sampling  0.12 (0.03, 0.51) - - 
Hierarchical distance sampling with temporary emigration 56.5 (0, 5.89e+10) - - 
     
Point count data pooled: 6 visits per site     
N-mixture model 57.9 (0.01, 556,296) - - 
Hierarchical distance sampling 0.17 (0.06, 0.48) - - 
Hierarchical distance sampling with temporary emigration 58.6 (0.05, 72,382) - - 

 

 



Table 10. Support for candidate models predicting abundance and probability of detection 
estimates using N-mixture models for different dusky grouse survey methods for spring 2019 
pilot season. Three different abundance distributions are examined: Poisson distribution, 
negative binomial distribution, and zero-inflated Poisson distribution. ~ 1 ~ 1 indicates that 
models were fitted with constant probability of detection and local abundance, respectively. The 
number of parameters (K), AICc values, Δ AICc values, and model weights (wi) are reported. 

Model K AICc Δ AICc wi 

Point counts without electronic playback – 3 visits per site    
~ 1 ~ 1; Poisson distribution 2 120.08 0.00 0.47 
~ 1 ~ 1; Zero-inflated Poisson distribution 3 121 0.91 0.3 
~ 1 ~ 1; Negative binomial distribution 3 121.53 1.45 0.23 
     
Point counts with electronic playback – 3 visits per site    
~ 1 ~ 1; Poisson distribution 2 171.72 0.00 0.47 
~ 1 ~ 1; Zero-inflated Poisson distribution 3 172.59 0.87 0.3 
~ 1 ~ 1; Negative Binomial distribution 3 173.19 1.47 0.23 
     
Point count data pooled – 6 visits per site    
~ Survey type ~ 1; zero-inflated Poisson distribution 4 290.09 0.00 0.228 
~ Survey type ~ 1; Poisson distribution 3 290.11 0.016 0.226 
~ 1 ~ 1; zero-inflated Poisson distribution 3 290.65 0.559 0.172 
~ 1 ~ 1; Poisson distribution 2 291.05 0.96 0.141 
~ Survey type ~ 1; negative binomial distribution 4 291.16 1.066 0.134 
~ 1 ~ 1; negative binomial distribution 3 291.75 1.658 0.099 
     
Transect surveys     
~ 1 ~ 1; negative binomial distribution 3 135.5 0.00 1.00 
~ 1 ~ 1; zero-inflated Poisson distribution 3 148.24 12.73 0.00 
~ 1 ~ 1; Poisson distribution 2 178.95 43.44 0.00 

 
 

 

 

 

 

 

 

 

 

 



Table 11. Support for candidate models predicting abundance and probability of detection 
estimates using N-mixture models for different dusky grouse survey methods for summer 2019. 
Three different abundance distributions are examined: Poisson distribution, negative binomial 
distribution, and zero-inflated Poisson distribution. ~ 1 ~ 1 indicates that models were fitted with 
constant probability of detection and local abundance, respectively. The number of parameters, 
AICc values, Δ AICc values, and model weights (wi) are reported. 

Model K AICc Δ AICc wi 

Point counts without electronic playback – 3 visits per site    
~ 1 ~ 1; Poisson distribution 2 47.18 0.00 0.58 
~ 1 ~ 1; Zero-inflated Poisson distribution 3 49.18 2.00 0.21 
~ 1 ~ 1; Negative binomial distribution 3 49.18 2.00 0.21 
     
Point counts with electronic playback – 3 visits per site    
~ 1 ~ 1; Poisson distribution 2 47.18 0.00 0.58 
~ 1 ~ 1; Negative Binomial distribution 3 49.18 2.00 0.21 
~ 1 ~ 1; Zero-inflated Poisson distribution 3 49.18 2.00 0.21 
     
Point count data pooled – 6 visits per site    
~ 1 ~ 1; Poisson distribution 2 90.36 0.00 0.42 
~ Survey type ~ 1; Poisson distribution 3 92.36 2.00 0.16 
~ 1 ~ 1; zero-inflated Poisson distribution 3 92.36 2.00 0.16 
~ 1 ~ 1; negative binomial distribution 3 92.37 2.00 0.16 
~ Survey type ~ 1; zero-inflated Poisson distribution 4 94.36 4.00 0.06 
~ Survey type ~ 1; negative binomial distribution 4 94.37 4.00 0.06 
     
Transect surveys     
~ 1 ~ 1; zero-inflated Poisson distribution 3 117.06 0.00 0.38 
~ 1 ~ 1; Poisson distribution 2 117.28 0.22 0.34 
~ 1 ~ 1; negative binomial 3 117.6 0.54 0.29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 12. Support for candidate models predicting density and abundance estimates using 
hierarchical distance sampling for different dusky grouse survey methods for spring 2019. Three 
different detection functions were examined: half-normal, hazard-rate, and uniform. ~ 1 ~ 1 
indicates that models were fitted with constant probability of detection and local density, 
respectively. The number of parameters (K), AICc values, Δ AICc values, and model weights (wi) 
are reported. 

Model K AICc Δ AICc wi 

Point counts without electronic playback     
~ 1 ~ 1; half-normal detection function 2 156.24 0.00 0.54 
~ 1 ~ 1; hazard-rate detection function 3 156.81 0.57 0.41 
~ 1 ~ 1; uniform detection function 1 160.89 4.65 0.05 
     
Point counts with electronic playback     
~ 1 ~ 1; half-normal detection function 2 247.8 0.00 0.62 
~ 1 ~ 1; hazard-rate detection function 3 249.04 1.25 0.33 
~ 1 ~ 1; uniform detection function 1 252.67 4.88 0.05 
     
Point count data pooled     
~ Survey type ~ 1; hazard-rate detection function 4 401.88 0.00 0.41 
~ Survey type ~ 1; half-normal detection function 3 402.58 0.70 0.29 
~ 1 ~ 1; half-normal detection function 2 403.89 2.01 0.15 
~ 1 ~ 1; hazard-rate detection function 3 404.04 2.16 0.14 
~ 1 ~ 1; uniform detection function 1 413.22 11.34 0.00 
~ Survey type ~ 1; uniform detection function 1 415.22 13.34 0.00 
     
Transect surveys     
~ 1 ~ 1; half-normal detection function 3 196.68 0.00 0.72 
~ 1 ~ 1; hazard-rate detection function 4 198.58 1.90 0.28 
~ 1 ~ 1; uniform detection function 2 239.51 42.83 0.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 13. Support for candidate models predicting density and abundance estimates using 
hierarchical distance sampling with temporary emigration for different dusky grouse survey 
methods for spring 2019. Repeat visits are used to estimate the availability of an individual to be 
surveyed (phi). Model parameters are ~ abundance ~ phi ~ detection, with a constant parameter 
being represented by a 1. Three different detection functions were examined: half-normal, 
hazard-rate, and uniform. The number of parameters (K), AICc values, Δ AICc values, and model 
weights (wi) are reported. 

Model K AICc Δ AICc wi 

Point counts without electronic playback     
~ 1 ~ 1 ~ 1; half-normal detection function 3 156.74 0.00 0.768 
~ 1 ~ 1 ~ 1; uniform detection function 2 159.39 2.65 0.204 
~ 1 ~ 1 ~ 1; hazard-rate detection function 4 163.39 6.65 0.028 
     
Point counts with electronic playback     
~ 1 ~ 1 ~ 1; half-normal detection function 3 239.79 0.00 0.788 
~ 1 ~ 1 ~ 1; uniform detection function 2 242.67 2.88 0.187 
~ 1 ~ 1 ~ 1; hazard-rate detection function 4 246.67 6.88 0.025 
     
Point count data pooled     
~ 1 ~ 1 ~ Survey type; hazard-rate detection function 4 401.88 0.00 0.41 
~ 1 ~ 1 ~ Survey type; half-normal detection function 3 402.58 0.70 0.29 
~ 1 ~ 1 ~ 1; half-normal detection function 2 403.89 2.01 0.15 
~ 1 ~ 1 ~ 1; hazard-rate detection function 3 404.04 2.16 0.14 
~ 1 ~ 1 ~ Survey type; uniform detection function 1 413.22 11.34 0.00 
~ 1 ~ 1 ~ 1; uniform detection function 1 415.22 13.34 0.00 
     
Transect surveys     
~ 1 ~ 1 ~ 1; half-normal detection function 3 196.68 0.00 0.72 
~ 1 ~ 1 ~ 1; hazard-rate detection function 4 198.58 1.90 0.28 
~ 1 ~ 1 ~ 1; uniform detection function 2 239.51 42.83 0.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 14. Support for candidate models predicting density and abundance estimates using 
hierarchical distance sampling for different dusky grouse survey methods for summer 2019. 
Three different detection functions were examined: half-normal, hazard-rate, and uniform. ~ 1 ~ 
1 indicates that models were fitted with constant probability of detection and local density, 
respectively. The number of parameters (K), AICc values, Δ AICc values, and model weights (wi) 
are reported. 

Model K AICc Δ AICc wi 

Point counts without electronic playback     
~ 1 ~ 1; half-normal detection function 2 51.71 0.00 0.73 
~ 1 ~ 1; hazard-rate detection function 3 53.68 1.97 0.27 
~ 1 ~ 1; uniform detection function 1 67.16 15.45 0.00 
     
Point counts with electronic playback     
~ 1 ~ 1; half-normal detection function 2 53.46 0.00 0.53 
~ 1 ~ 1; hazard-rate detection function 3 53.68 0.22 0.47 
~ 1 ~ 1; uniform detection function 1 62.77 9.31 0.01 
     
Point count data pooled     
~ 1 ~ 1; half-normal detection function 2 102.27 0.00 0.42 
~ 1 ~ 1; hazard-rate detection function 3 103.45 1.18 0.23 
~ Survey type ~ 1; half-normal detection function 3 103.80 1.53 0.20 
~ Survey type ~ 1; hazard-rate detection function 4 104.40 2.13 0.15 
~ 1 ~ 1; uniform detection function 1 125.93 23.66 0.00 
~ Survey type ~ 1; uniform detection function 1 127.93 25.66 0.00 
     
Transect surveys     
~ 1 ~ 1; hazard-rate detection function 3 132.09 0.00 1.00 
~ 1 ~ 1; half-normal detection function 2 143.92 11.83 0.00 
~ 1 ~ 1; uniform detection function 1 188.75 56.66 0.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 15. Support for candidate models predicting density and abundance estimates using 
hierarchical distance sampling for different dusky grouse survey methods for summer 2019. 
Repeat visits are used to estimate availability of an individual to be surveyed (phi). Model 
parameters are ~ abundance ~ phi ~ detection, with a constant parameter being represented by a 
1. Three different detection functions were examined: half-normal, hazard-rate, and uniform. For 
point counts with electronic playback and for pooled point count data where survey type affected 
detection, hazard-rate detection functions could not be fit to the data. The number of parameters 
(K), AICc values, Δ AICc values, and model weights (wi) are reported. 

Model K AICc Δ AICc wi 

Point counts without electronic playback     
~ 1 ~ 1 ~ 1; half-normal detection function 3 53.71 0.00 0.73 
~ 1 ~ 1 ~ 1; hazard-rate detection function 4 55.68 1.97 0.27 
~ 1 ~ 1 ~ 1; uniform detection function 2 67.17 13.45 0.00 
     
Point counts with electronic playback     
~ 1 ~ 1 ~ 1; half-normal detection function 3 55.46 0.00 0.975 
~ 1 ~ 1 ~ 1; uniform detection function 2 62.77 7.31 0.025 
     
Point count data pooled     
~ 1 ~ 1 ~ 1; half-normal detection function 3 104.27 0.00 0.49 
~ 1 ~ 1 ~ 1; hazard-rate detection function 4 105.45 1.18 0.27 
~ 1 ~ 1 ~ Survey type; half-normal detection function 4 105.8 1.53 0.23 
~ 1 ~ 1 ~ 1; uniform detection function 2 125.94 21.66 0.00 
~ 1 ~ 1 ~ Survey type; uniform detection function 2 125.94 21.66 0.00 
     
Transect surveys     
~ 1 ~ 1 ~ 1; hazard-rate detection function 4 126.44 0.00 1.00 
~ 1 ~ 1 ~ 1; half-normal detection function 3 137.7 11.26 0.00 
~ 1 ~ 1 ~ 1; uniform detection function 2 180.53 54.09 0.00 

 

Table 16. Estimates of local abundance with 95% confidence intervals (per 0.03 km2) for point 
counts conducted along different transect types: off trail (2019 data, n = 90), on roads (2020-
2021 data, n = 1589), and trails (2020-2021 data, n = 1534). 

Route Type Year Estimate SE 95% Confidence Interval 
Road 2020 0.17 0.02 0.14–0.20 
Road 2021 0.14 0.01 0.12–0.17 
Trail 2020 0.19 0.16 0.16–0.23 
Trail 2021 0.23 0.02 0.20–0.27 
Off-trail 2019 0.36 0.13 0.18–0.73 

 

 

 



Table 17. Estimates of probability of detection with 95% confidence intervals for point counts 
conducted along different transect types: off trail (2019 data, n = 90), on roads (2020-2021 data, 
n = 1589), and trails (2020-2021 data, n = 1534). 

Route Type Year Estimate SE 95% Confidence Interval 
Road 2020 0.32 0.03 0.27–0.38 
Road 2021 0.38 0.03 0.33–0.43 
Trail 2020 0.42 0.03 0.37–0.48 
Trail 2021 0.36 0.02 0.32–0.41 

Off-trail 2019 0.28 0.10 0.13–0.50 
 

Table 18. Model support for candidate models evaluating linear and nonlinear relationships 
between detection and temperature (temp), day during the survey season (day), and minutes 
since sunrise (minute) evaluated using single-season N-mixture models.  
Model # Parameters AIC Delta AIC Model Weight 
Temp 3 5114.6 0 0.71 
Temp2 4 5116.4 1.8 0.29 
Day2 4 5096.6 0.0 0.99 
Day 3 5110.1 13.5 <0.01 
Minutes2 4 5086.5 0.0 0.98 
Minutes 3 5094.6 8.1 0.02 

 
Table 19. Estimates of coefficients for standardized covariates from N-mixture model with 
constant abundance and a global model for detection that includes cloud cover, precipitation, 
noise level, temperature, minutes since sunrise, day during the sampling period. Reference level 
for precipitation (precip) is none, for cloud cover is 0-15%, and for noise level is level 0. 

Parameter Estimate SE 95% Confidence Interval 
Intercept -0.22 0.09 -0.41– -0.04 
Precip: Fog  0.76 0.39 -0.01–1.53 
Precip: Rain -0.10 0.37 -0.82–0.63 
Precip: Snow 0.01 0.32 -0.62–0.64 
Cloud Cover: 16-50 -0.82 0.19 -1.19– -0.46 
Cloud Cover: 51-80 -0.86 0.20 -1.25– -0.47 
Cloud Cover: 81-100 -0.53 0.15 -0.83– -0.24 
Temperature  0.12 0.07 -0.02–0.25 
Wind -0.07 0.05 -0.18–0.04 
Noise Level: 1 -0.38 0.12 -0.61– -0.15 
Noise Level: 2 -1.54 0.20 -1.93– -1.15 
Noise Level: 3 -3.03 0.63 -4.26– -1.80 
Minutes 0.41 0.20 0.02–0.81 
Minutes2 -0.73 0.21 -1.14– -0.31 
Day  1.29 0.37 0.56–2.02 
Day2 -1.25 0.36 -1.97– -0.54 

 



Table 20. Model support for candidate models evaluating linear and nonlinear relationships 
between sigma for the half-normal detection function and temperature, day during the survey 
season, and minute since sunrise evaluated using hierarchical distance sampling models. 

Model # Parameters AIC Delta AIC Model Weight 
Temp 3 2221.4 0.0 0.68 
Temp2 4 2223.0 1.6 0.32 
Day2 4 2219.5 0.0 0.99 
Day 3 2228.8 9.3 0.01 
Minutes 3 2228.1 0.0 0.62 
Minutes2 4 2229.1 1.0 0.38 

 
Table 21. Model support for candidate models evaluating linear and nonlinear relationships 
between availability and temperature, day during the survey season, and minute since sunrise 
evaluated using hierarchical distance sampling with time removal models. 

Model # Parameters AIC Delta AIC Model Weight 
Temp 3 2792.75 0.0 0.58 
Temp2 4 2793.43 0.68 0.42 
Day2 4 2784.25 0.0 1.00 
Day 3 2797.80 13.55 0.00 
Minutes2 4 2797.02 0.0 0.56 
Minutes 3 2797.50 0.48 0.44 

 
Table 22. Estimates of coefficients for standardized covariates from hierarchical distance 
sampling model with constant abundance and a global model for detection that includes cloud 
cover, precipitation, noise level, temperature, minutes since sunrise, day during the sampling 
period. Reference level for precipitation is none, for cloud cover is 0-15%, and for noise level is 
level 0. 

Parameter Estimate SE 95% Confidence Interval 
Intercept 3.94 0.08 3.78–4.11 
Precip: Fog -0.23 0.23 -0.67–0.22 
Precip: Rain -0.46 0.21 -0.88– -0.05 
Precip: Snow -0.11 0.22 -0.54–0.33 
Cloud Cover: 16-50 -0.48 0.13 -0.73– -0.23 
Cloud Cover: 51-80 -0.32 0.12 -0.55– -0.09 
Cloud Cover: 81-100 -0.18 0.09 -0.36– 0.005 
Temperature 0.08 0.04 -0.002–0.17 
Wind 0.02 0.04 -0.05–0.10 
Noise Level: 1 -0.11 0.07 -0.25– 0.04 
Noise Level: 2 -0.49 0.11 -0.69– -0.28 
Noise Level: 3 -6.26 76.10 -155.40–142.89 
Minutes 0.00 0.04 -0.08–0.08 
Day 0.57 0.19 0.20–0.95 
Day2 -0.62 0.19 -0.99– -0.24 



Table 23. Estimates of coefficients for standardized covariates from hierarchical distance 
sampling with time removal model with constant abundance and a global model for availability 
that includes cloud cover, precipitation, temperature, minutes since sunrise, day during the 
sampling period. Reference level for precipitation (precip) is fog, for cloud cover is 0-15%, and 
for noise level is level 0. 

Parameter Estimate SE 95% Confidence Interval 
Intercept -3.84 1.19 -6.17– -1.51 
Precip: None 2.59 1.25 0.14–5.03 
Precip: Rain 1.68 1.33 -0.92–4.29 
Precip: Snow 2.19 1.33 -0.41–4.79 
Cloud Cover: 16-50 -0.14 0.79 -1.69–1.42 
Cloud Cover: 51-80 -0.35 0.71 -1.76–1.05 
Cloud Cover: 81-100 -0.31 0.49 -1.26–0.65 
Temperature 0.06 0.16 -0.26–0.38 
Wind 0.10 0.09 -0.09–0.30 
Minutes 0.12 0.14 -0.16–0.40 
Day 2.62 0.19 1.18–4.07 
Day2 -2.65 0.71 -4.05– -1.26 

 

Table 24. Estimates of coefficients for standardized covariates from hierarchical distance 
sampling model with constant abundance and a global model for detection that includes cloud 
cover, precipitation, noise level, temperature, minutes since sunrise, day during the sampling 
period. 

Parameter Estimate SE 95% Confidence Interval 
Intercept 3.87 0.07 3.72–4.01 
Noise Level: 1 -0.14 0.07 -0.29–0.004 
Noise Level: 2 -0.51 0.10 -0.71– -0.31 
Noise Level: 3 -1.34 0.53 -2.38– -0.29 

 
Table 25. Model support for candidate models evaluating linear and nonlinear relationships 
between sigma and day during the survey season using hierarchical distance sampling for line 
transects. 

Model # Parameters AIC Delta AIC Model Weight 
Day2 4 1201.94 0.0 1.00 
Day 3 1214.62 12.68 0.00 

 
 



Table 26. Mean (95% credible interval) for bias and coefficient of variation from 400 simulation runs for each suite of parameters. R = 
number of sites, J = number of replicate visits, 𝜆𝜆 = mean abundance per site, p = mean detection probability, CV = coefficient of 
variation for total population size (Total N), and N.site = estimated number of dusky grouse per survey site. 

 

*Table printed as image here to fit the page; a spreadsheet of this table is available in provided supplemental materials 

R J λ p

50 3 1.25 0.5 0.08 (-0.28 – 0.51) -0.01 (-0.14 – 0.11) 4.0 (-8.9 – 21.8) 0.08 (-0.17 – 0.43) 0.16 (0.09 – 0.27) 0.48 0.21 (0.15 – 0.28) 0.98 No

100 3 1.25 0.5 0.05 (-0.21 – 0.36) -0.01 (-0.09 – 0.08) 4.8 (-14.3 – 25.7) 0.05 (-0.14 – 0.26) 0.09 (0.06 – 0.14) 0.02 0.13 (0.11 – 0.16) 0.12 Yes

200 3 1.25 0.5 0.01 (-0.18 – 0.20) -0.004 (-0.06 – 0.05) 4.0 (-18.1 – 31.4) 0.02 (-0.09 – 0.15) 0.06 (0.05 – 0.08) 0.00 0.09 (0.08 – 0.10) 0.00 Yes

500 3 1.25 0.5 0.008 (-0.11 – 0.11) -0.002 ( -0.04 – 0.04) 5.0 (-35.2 – 46.3) 0.01 (-0.07 – 0.09) 0.04 (0.03 – 0.05) 0.00 0.055 (0.05 – 0.06) 0.00 Yes

50 2 1.25 0.5 0.35 (-0.30 – 1.87) -0.02 (-0.22 – 0.13) 17.2 (-12.5 – 90.1) 0.34 (-0.25 – 1.80) 0.39 (0.15 – 0.92) 0.94 0.41 (0.20 – 0.93) 1.00 No

100 2 1.25 0.5 0.11 (-0.26 – 0.59) -0.01 (-0.14 – 0.10) 12.8 (-18.0 – 57.3) 0.13 (-0.18 – 0.57) 0.19 (0.11 – 0.34) 0.70 0.21 (0.14 – 0.36) 0.92 No

200 2 1.25 0.5 0.06 (-0.19 – 0.31) -0.01 ( -0.09 – 0.08) 12.3 (-31.5 – 61.7) 0.06 (-0.16 – 0.31) 0.11 (0.08 – 0.16) 0.14 0.13 (0.10 – 0.17) 0.23 Yes-ish

500 2 1.25 0.5 0.02 ( -0.12 – 0.21) -0.003 (-0.06 – 0.05) 10.0 (-53.1 – 88.9) 0.02 (-0.11 – 0.18) 0.07 (0.05 – 008) 0.00 0.08 ( 0.07 – 0.09) 0.00 Yes

50 3 0.625 0.5 0.07 (-0.19 – 0.39) -0.02 (-0.16 – 0.11) 3.1 (-4.5 – 15.3) 0.06 (-0.09 – 0.31) 0.19 (0.09 – 0.39) 0.59 0.27 (0.20 – 0.42) 1.00 No

100 3 0.625 0.5 0.02 (-0.13 – 0.19) -0.01 (-0.11 – 0.08) 2.3 (-6.1 – 13.7) 0.02 (-0.06 – 0.14) 0.13 (0.07 – 0.16) 0.09 0.16 (0.14 – 0.21) 0.86 Yes-ish

200 3 0.625 0.5 0.008 ( -0.11 – 0.14) -0.004 ( -0.08 – 0.06) 2.3 ( -10.4 – 17.8) 0.01 (-0.05 – 0.09) 0.07 (0.05 – 0.09) 0.00 0.11 (0.10 – 0.13) 0.00 Yes

500 3 0.625 0.5 0.008 (-0.08 – 0.10) -0.003 (-0.07 – 0.06) 5.1 (-29.7 – 48.5) 0.01 (-0.06 – 0.09) 0.08 (0.06 – 0.10) 0.00 0.10 (0.09 – 0.11) 0.00 Yes

50 2 0.625 0.5 0.24 (-0.17 – 1.02) -0.03 (-0.25 – 0.17) 11.9 (-6.5 – 53.4) 0.24 (-0.13 – 1.06) 0.51 (0.16 – 1.10) 0.96 0.55 (0.25 – 1.12) 1.00 No

100 2 0.625 0.5 0.09 (-0.15 – 0.47) -0.02 (-0.19 – 0.12) 9.1 (-10.9 – 45.4) 0.09 (-0.11 –0.45) 0.25 (0.11 – 0.47) 0.81 0.29 (0.18 – 0.49) 1.00 No

200 2 0.625 0.5 0.04 (-0.12 – 0.23) -0.01 (-0.13 – 0.09) 8.2 (-17.9 – 44.3) 0.04 (-0.09 – 0.22) 0.14 (0.09 – 0.23) 0.34 0.17 (0.13 – 0.24) 0.63 No

500 2 0.625 0.5 0.02 (-0.08 – 0.12) -0.008 (-0.07 – 0.06) 8.5 (-31.5 – 49.1 0.02 (-0.06 – 0.10) 0.08 (006 – 0.10) 0.00 0.10 (0.08 – 0.11) 0.00 Yes

CV Total N
Probability 

CV N.total > 
0.15

CV λ
Probability 
that CV λ     

> 0.15

Protocol meets 
Management 
Requirements

Simulation Parameters
Bias in λ Bias in p Bias in Total N Bias in N.site



Table 27. Results of simulations evaluating the efficacy of survey protocols using parameters estimated from the 2019 spring pilot 
study. Simulations 1, 2, and 3 evaluated current survey protocols. Simulations 4, 5, and 6 evaluated survey protocols where the 
number of sites surveyed was increased. Simulations 7, 8, and 9 evaluated survey protocols where the number of visits was increased. 
Mean (95% credible interval) for bias and coefficient of variation from 400 simulation runs for each suite of parameters. R = number 
of survey sites, J = number of replicate visits, λ = mean abundance per site, p = mean detection probability; CV = coefficient of 
variation for total population size (Total N) and N.site = estimated number of dusky grouse per survey site. 
 

 
* Table is printed here as an image in order to fit the page; a spreadsheet of this table is available in the provided supplemental 
materials 
 
 
 
 
 
 
 
 
 
 
 
 

R J λ p

Sim 1 100 3 0.17 0.28 0.07 (-0.08, 0.30) 0.01 (-0.15, 0.18) 6.89 (-5.25, 30.45) 0.07 (-0.05, 0.30) 0.68 (0.23, 1.35) 1 no
Sim 2 100 3 0.36 0.28 0.08 (-0.13, 0.41) 0.00 (-0.12, 0.14) 8.13 (-10.49, 41.42) 0.08 (-0.10, 0.41) 0.45 (0.21, 0.94) 0.99 no
Sim 3 100 3 0.48 0.28 0.1 (-0.17, 0.47) 0.00 (-0.11, 0.13) 9.48 (-13.34, 45.66) 0.09 (-0.13, 0.46) 0.39 (0.18, 0.78) 0.99 no

Sim 4 300 3 0.48 0.28 0.02 (-0.10, 0.18) 0.00 (-0.06, 0.07) 5.24 (-25.79, 45.50) 0.02 (-0.09, 0.15) 0.16 (0.12, 0.22) 0.59 no
Sim 5 400 3 0.48 0.28 0.02 (-0.09, 0.17) 0.00 (-0.06, 0.07) 6.70 (-31.02, 58.30) 0.02 (-0.08, 0.15) 0.13 (0.10, 0.18) 0.27 no
Sim 6 500 3 0.48 0.28 0.01 (-0.09, 0.13) -0.00 (-0.06, 0.06) 7.73 (-36.82, 62.82) 0.02 (-0.07, 0.13) 0.12 (0.09, 0.16) 0.09 yes

Sim 7 100 6 0.48 0.28 0.02 (-0.12, 0.17) -0.00 (-0.07, 0.07) 1.96 (-7.05, 13.97) 0.02 (-0.07, 0.14) 0.13 (0.09, 0.18) 0.20 no
Sim 8 100 8 0.48 0.28 0.01 (-0.11, 0.16) 0.00 (-0.05, 0.06) 0.79 (-5.80, 7.80) 0.01 (-0.06, 0.08) 0.09 (0.06, 0.11) 0.00 yes
Sim 9 100 9 0.48 0.28 0.01 (-0.11, 0.14) -0.00 (-0.05, 0.04) 0.90 (-4.75, 6.78) 0.01 (-0.05, 0.07) 0.08 (0.06, 0.10) 0.00 yes

Probability CV
 N.total > 0.15

Protocol 
meets

 Management

Simulation Parameters
Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N



Table 28. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2019 spring pilot study. Mean 
(95% credible interval) for bias and coefficient of variation from 400 simulation runs for each suite of parameters. Simulations 
evaluated survey protocols with an estimate of abundance and probability of detection from spring 2019 surveys using electronic 
playback. R = number of survey sites, J = number of replicate visits, λ = mean abundance per site, p = mean detection probability; CV 
= coefficient of variation for total population size (Total N) and N.site = estimated number of dusky grouse per survey site. 
Convergence errors = model convergence errors for estimated number of dusky grouse per survey site despite running 3 chains of 
length 40,000. The number of convergence errors was not initially recorded and thus is not available for all simulations; the current 
classification of yes – many or few is based on personal observation.  

 
* Table is printed here as an image in order to fit the page; a spreadsheet of this table is available in the provided supplemental 
materials 
 

R J λ p

Sim 1 100 8 0.36 0.28 0.01 (-0.10, 0.11) -0.00 (0.05, 0.05) 0.85 (-3.96, 6.47) 0.01 (-0.04, 0.06) 0.09 (0.07, 0.13) 0.02 yes yes - many
Sim 2 100 9 0.36 0.28 0.01 (-0.10, 0.13) -0.00 (-0.06, 0.05) 0.8 (-3.70, 5.70) 0.01 (-0.04, 0.06) 0.08 (0.06, 0.11) 0 yes yes - many
Sim 3 150 6 0.36 0.28 0.02 (-0.09, 0.12) -0.00 (-0.06, 0.06) 2.01 (-7.18, 12.75) 0.01 (-0.05, 0.09) 0.11 (0.08, 0.14) 0.04 yes yes - many
Sim 4 150 8 0.36 0.28 0.01 (-0.08, 0.10) -0.00 (-0.05, 0.05) 0.76 (-4.14, 7.47) 0.01 (-0.03, 0.05) 0.07 (0.05, 0.09) 0 yes yes - many
Sim 5 180 6 0.36 0.28 0.01 (-0.09, 0.10) 0.00 (-0.05, 0.06) 0.86 (-8.28, 11.59) 0.00 (-0.05, 0.06) 0.09 (0.07, 0.12) 0.01 yes yes - many
Sim 6 300 4 0.36 0.28 0.00 (-0.08, 0.10) 0.00 (-0.06, 0.07) 1.92 (-17.13, 24.09) 0.01 (-0.06, 0.08) 0.12 (0.09, 0.16) 0.08 yes-ish few
Sim 7 360 4 0.36 0.28 0.01 (-0.06, 0.09) 0.00 (-0.05, 0.06) 2.84 (-17.50, 26.25) 0.01 (-0.05, 0.08) 0.11 (0.08, 0.14) 0.02 yes few
Sim 8 200 6 0.36 0.28 0.01 (-0.07, 0.11) -0.00 (-0.06, 0.05) 1.78 (-7.85, 12.14) 0.01 (-0.04, 0.06) 0.09 (0.07, 0.12) 0.01 yes few
Sim 9 200 8 0.36 0.28 0.01 (-0.06, 0.09) -0.00 (-0.05, 0.04) 1.49 (-5.96, 10.08) 0.01 (-0.03, 0.05) 0.06 (0.05, 0.08) 0 yes yes - many

Sim 10 200 9 0.36 0.28 0.00 (-0.07, 0.09) 0.00 (-0.04, 0.04) 0.66 (-5.98, 6.99) 0.00 (-0.03, 0.03) 0.05 (0.04, 0.07) 0 yes yes - many

Probability CV
 N.total > 0.15

Protocol meets
 Management
 Requirements

Convergence Errors
Simulation Parameters

Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N



Table 29. Support for candidate models examining three different detection functions, half-
normal, hazard-rate, and uniform, for hierarchical distance sampling models for point counts 
fitted with constant probability of detection and local density/abundance. 

Model K AICc Δ AICc wi 

Null model, Half-normal detection function 2 2226.8 0.0 1.00 
Null model, Uniform detection function 1 2332.4 105.7 0.00 
Null model, Hazard-rate detection function 3 2334.4 107.7 0.00 

 

Table 30. Estimates for MFWP regional local abundance (grouse per survey site) evaluated using 
single season N-mixture models. Average lambda/local abundance was estimated using a model 
where abundance and detection were both held constant. FWP regional local abundances were 
estimated using a model where local abundance was varied by region and detection was held 
constant. 

Parameter Estimate SE 
95% confidence 

interval 
Region 1 λ 0.13 0.02 0.10–0.17 
Region 2 λ 0.31 0.03 0.27–0.37 
Region 3 λ 0.19 0.02 0.16–0.23 
Region 4 λ 0.08 0.01 0.06–0.11 
Region 5 λ 0.21 0.02 0.17–0.26 
Average λ 0.18 0.01 0.17–0.20 

 

Table 31. Estimates for FWP regional local abundance evaluated using hierarchical distance 
sampling models. Average lambda/local abundance was estimated using a model where 
abundance and detection were both held constant. FWP regional local abundances were 
estimated using a model where local abundance was varied by region and detection was held 
constant. 

Parameter Estimate SE 95% confidence interval 
Region 1 λ 0.12 0.03 0.08–0.19 
Region 2 λ 0.36 0.05 0.27–0.47 
Region 3 λ 0.21 0.03 0.15–0.29 
Region 4 λ 0.07 0.02 0.04–0.12 
Region 5 λ 0.23 0.04 0.16–0.33 
Average λ 0.20 0.02 0.16–0.24 

 

 

 

 



Table 32. Parameter estimates used to inform simulation scenarios. Abundance estimates were 
used to inform scenarios for both single-season N-mixture and hierarchical distance sampling 
models. Sigma was used to inform the detection function for the hierarchical distance sampling 
models and detection was used to inform the probability of detection for the single-season N-
mixture models.  

Parameter Survey 
Type 

Model Estimate 

Low abundance - - 0.09 
Average abundance - - 0.18 
High abundance - - 0.31 
Average detection PC N-mixture 0.37 
High detection PC N-mixture 0.57 
Average sigma PC Hierarchical distance sampling 43 
High sigma PC Hierarchical distance sampling 58 
Average sigma PC Hierarchical distance sampling with time removal 43 
High sigma PC Hierarchical distance sampling with time removal 48 
Average availability PC Hierarchical distance sampling with time removal 0.65 
High availability PC Hierarchical distance sampling with time removal 0.89 
Average sigma Line Hierarchical distance sampling 42 
High sigma Line Hierarchical distance sampling 51 

 

Table 33. Support for candidate models examining three different detection functions, half-
normal, hazard-rate, and uniform, for hierarchical distance sampling models for transects for 
visit 1 fitted with constant probability of detection and local density/abundance. 

Model K AICc Δ AICc wi 

Null model, Hazard-rate detection function 3 1211.34 0.00 0.82 
Null model, Half-normal detection function 2 1214.43 3.09 0.18 
Null model, Uniform detection function 1 1286.29 74.95 0.00 

 

Table 34. Support for candidate models examining three different detection functions, half-
normal, hazard-rate, and uniform, for hierarchical distance sampling models for transects for 
visit 2 fitted with constant probability of detection and local density/abundance. 

Model K AICc Δ AICc wi 

Null model, Half-normal detection function 2 743.96 0.00 0.99 
Null model, Uniform detection function 1 753.55 9.59 0.01 

 

 
 

 

 



Table 35. From the simulation results, the number of visits, sites to be surveyed, total number of 
point counts to be conducted, and the potential number of transects (if there are 6 points on each 
transect) for providing robust population estimates using N-mixture models (point counts), 
hierarchical distance sampling (point counts and transects), and hierarchical distance sampling 
with time removal under 6 different scenarios. HA = high abundance, average detection, AA = 
average abundance, average detection, LA = low abundance, average detection, HH = high 
abundance, high detection, AH = average abundance, high detection, LH = low abundance, high 
detection. Simulations were only conducted under 2 scenarios for the hierarchical distance 
sampling with time removal. The transect length evaluated was 2,681m (the average transect 
length for 2020 and 2021).  

Scenario Model 
# of 

Visits # of Sites 
# of Point 

Counts 
Transect 

(6pts) 

HA 

N-mixture point count 4 170 680 29 
HDS point count 1 1,090 1,090 182 
HDS with time removal point count 1 > 6,000 > 6,000 > 1,000 
HDS transect 1 25 NA 25 

AA 

N-mixture point count 4 240 960 40 
HDS point count 1 1870 1870 312 
HDS with time removal point count 1 NA NA NA 
HDS transect 1 40 NA 40 

LA 

N-mixture point count 4 490 1960 82 
HDS point count 1 4230 4230 705 
HDS with time removal point count 1 NA NA NA 
HDS transect 1 90 NA 90 

HH 

N-mixture point count 4 60 240 10 
HDS point count 1 800 800 134 
HDS with time removal point count 1 1390 1390 232 
HDS transect 1 20 NA 20 

AH 

N-mixture point count 4 80 320 14 
HDS point count 1 1360 1360 227 
HDS with time removal point count 1 NA NA NA 
HDS transect 1 35 NA 35 

LH 

N-mixture point count 4 140 560 24 
HDS point count 1 3110 3110 519 
HDS with time removal point count 1 NA NA NA 
HDS transect 1 70 NA 70 

 
Table 35. Correlation matrix for correlation between point counts for combined 2020 and 2021 
data. Point counts 1 and 2, and point counts 3 and 4 are conducted back-to-back. All point counts 
occurred on the same day. 

 Point Count 1 Point Count 2 Point Count 3 Point Count 4 
Point Count 1 1.00 0.67 0.41 0.44 
Point Count 2 - 1.00 0.48 0.47 
Point Count 3 - - 1.00 0.67 
Point Count 4 - - - 1.00 



Table 36. Results of simulations evaluating the effects of correlation between point counts for the recommended protocols for the N-
mixture models under 6 different scenarios. Mean (95% credible interval) for bias and coefficient of variation from 500 simulation 
runs for each suite of parameters. Different scenarios include combinations of high, average, and low abundance paired with either 
average or high detection. R = number of survey sites, λ = mean abundance per site, sigma = mean sigma, p.avail = mean probability 
of availability; CV = coefficient of variation for total population size (Total N) and N.site = estimated number of dusky grouse per 
survey site. 
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Table 37. Predicted power for a protocol where 80 sites are visited 4 times and abundances are estimated using an N-mixture model. 
Power was examined for a 1, 3, 5, and 10% annual decline over a period of 3, 5, and 10 years. A 10% decline over 10 years was not 
evaluated as sufficient power was reached after a period of 5 years..  

Annual Decline 3 years 5 years 10 years 
1% 8.2 14.4 39.2 
3% 19 40.6 80.8 
5% 26.8 61 94.6 

10% 49.6 87.2 NA 
 

R J λ p

170 4 0.31 0.37 -0.04 (-0.11, 0.03) 0.10 (0.05, 0.16) -6.80 (-13.46, -0.91) -0.04 (-0.08, -0.01) 0.07 (0.05, 0.09) 0.00 yes
240 4 0.18 0.37 -0.02 (-0.07, 0.02) 0.10 (0.05, 0.15) -5.69 (-11.41, -0.49) -0.02 (-0.05, 0.00) 0.07 (0.05, 0.09) 0.00 yes
490 4 0.08 0.37 -0.01 (-0.03, 0.01) 0.11 (0.06, 0.16) -4.73 (-9.50, -0.05) -0.01 (-0.02, 0.00) 0.07 (0.05, 0.09) 0.00 yes
60 4 0.31 0.57 0.00 (-0.13, 0.13) -0.04 (-0.13, 0.04) 0.41 (-2.22, 2.62) 0.01 (-0.04, 0.04) 0.10 (0.06, 0.15) 0.05 yes
80 4 0.18 0.57 0.01 (-0.06, 0.09) -0.04 (-0.13, 0.03) 0.33 (-1.68, 1.99) 0.00 (-0.02, 0.02) 0.10 (0.07, 0.16) 0.07 yes

140 4 0.08 0.57 0.00 (-0.03, 0.04) -0.05 (-0.13, 0.02) 0.26 (-1.40, 1.48) 0.00 (-0.01, 0.01) 0.11 (0.07, 0.17) 0.16 yes-ish

Probability CV
 N.total > 0.15

Protocol meets
 Management

 Requirements

Simulation Parameters

Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N



Table 38. Mean estimated slopes for predicted annual trend for a protocol where 80 sites are 
visited 4 times and abundances are estimated using an N-mixture model. Trend were examined 
for 1, 3, 5, and 10% annual declines over a period of 3, 5, and 10 years. 95% confidence intervals 
are calculated using a quantile of 0.025 and 0.975. A 10% decline over 10 years was not 
evaluated. 

Annual Decline 3 years 5 years 10 years 
1% -1.13 (-8.29, 5.94) -1.18 (-6.13, 2.78) -1.08 (-3.75, 0.84) 
3% -3.58 (-12.82, 4.38) -3.17 (-9.32, 1.63) -3.21 (-7.81, -0.1) 
5% -5.3 (-16.25, 3.68) -5.39 (-13.89, -0.08) -5.24 (-11.1, -1.16) 

10% -11.08 (-26.6, -0.11) -10.73 (-21.34, -0.07) NA 

 

Table 39. Percent of estimated slopes < 0 for predicted annual trend for a protocol where 80 sites 
are visited 4 times and abundances are estimated using an N-mixture model. Trends were 
examined for 1, 3, 5, and 10% annual declines over a period of 3, 5, and 10 years. A 10% decline 
over 10 years was not evaluated. 

Annual Decline 3 years 5 years 10 years 
1% 60.6 71 80.8 
3% 78.8 88.4 97.6 
5% 84.4 97.8 99 

10% 97.4 98.2 NA 
 



Table 40. Difference between the estimated slopes for predicted annual trend for true abundance and estimated abundances for a 
protocol where 80 sites are visited 4 times and abundances are estimated using N-mixture model. Trends were examined for 1, 3, 5, 
and 10% annual declines over a period of 3, 5 and 10 years. A 10% decline over 10 years was not evaluated.   

Annual Decline 3 years 5 years 10 years 

1% -0.0005 (-0.0618, 0.0656) -0.0012 (-0.0406, 0.0358) -0.0003 (-0.0138, 0.0137) 

3% -0.0030 (-0.0723, 0.0632) -0.0001 (-0.0399, 0.0350) 0.0007 (-0.0152, 0.0167) 

5% 0.0018 (-0.0637, 0.0695) 0.0009 (-0.0343, 0.0.371) 0.0011 (-0.0161, 0.0201) 

10% -0.0007 (-0.0801, 0.0720) 0.0014 (-0.0400, -0.0468) NA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 41. Results of simulations evaluating the effects of a covariate on estimates of abundance for the recommended protocols for the 
N-mixture models under 6 different scenarios. Mean (95% credible interval) for bias and coefficient of variation from 500 simulation 
runs for each suite of parameters. Different scenarios include combinations of high, average, and low abundance paired with either 
average or high detection. R = number of survey sites, λ = mean abundance per site, p = mean probability of detection; CV = 
coefficient of variation for total population size (Total N), N.site = estimated number of dusky grouse per survey site, alpha.lam = 
intercept from linear covariate model, alpha1.lam = slope coefficient (i.e. effect size) estimating linear relationship between local 
abundance and site covariate X. 
 

 
*Table printed as image here to fit the page; a spreadsheet of this table is available in provided supplemental materials 

 
 
 
 
 
 
 
 
 
 

R J λ p

170 4 0.31 - 1X 0.37 -0.02 (-0.33, 0.27) 0.00 (-0.47, 0.46) 0.00 (-0.08, 0.08) 2.13 (-8.23, 13.10) 0.01 (-0.05, 0.08) 0.11 (0.08, 0.16) 0.08 yes
240 4 0.18 - 1X 0.37 -0.04 (-0.41, 0.26) -0.02 (-0.55, 0.48) 0.00 (-0.08, 0.09) 0.89 (-7.29, 10.95) 0.00 (-0.03, 0.05) 0.11 (0.07, 0.16) 0.07 yes
490 4 0.08 - 1X 0.37 -0.04 (-0.40, 0.29) -0.03 (-0.56, 0.47) 0.00 (-0.08, 0.08) 1.26 (-5.84, 8.93) 0.00 (-0.01, 0.02) 0.11 (0.07, 0.15) 0.05 yes
60 4 0.31 - 1X 0.57 -0.10 (-0.61, 0.34) -0.07 (-0.82, 0.64) -0.02 (-0.13, 0.10) 0.81 (-1.96, 4.17) 0.01 (-0.03, 0.07) 0.09 (0.05, 0.15) 0.06 yes
80 4 0.18 - 1X 0.57 -0.13 (-0.73, 0.36) -0.13 (-1.17, 0.68) -0.01 (-0.13, 0.10) 0.58 (-1.45, 2.70) 0.01 (-0.02, 0.03) 0.09 (0.05, 0.15) 0.06 yes

140 4 0.08 - 1X 0.57 -0.20 (-1.01, 0.39) -0.12 (-1.25, 0.88) -0.02 (-0.16, 0.11) 0.41 (-1.36, 2.05) 0.00 (-0.01, 0.01) 0.10 (0.04, 0.19) 0.11 yes-ish
170 4 0.31 - 0.5X 0.37 -0.03 (-0.35, 0.27) -0.03 (-0.49, 0.43) -0.01 (-0.09, 0.08) 1.82 (-7.37, 13.90) 0.01 (-0.04, 0.08) 0.12 (0.08, 0.16) 0.10 yes
240 4 0.18 - 0.5X 0.37 -0.05 (-0.41, 0.29) 0.00 (-0.51, 0.48) 0.00 (-0.09, 0.08) 1.19 (-5.98, 9.97) 0.00 (-0.02, 0.04) 0.11 (0.08, 0.16) 0.10 yes
490 4 0.08 - 0.5X 0.37 -0.04 (-0.38, 0.28) -0.01 (-0.59, 0.47) 0.00 (-0.08, 0.08) 1.13 (-5.64, 8.03) 0.00 (-0.01, 0.02) 0.11 (0.07, 0.16) 0.07 yes
60 4 0.31 - 0.5X 0.57 -0.08 (-0.59, 0.31) -0.04 (-0.77, 0.70) -0.01 (-0.12, 0.10) 0.56 (-1.77, 3.07) 0.01 (-0.03, 0.05) 0.08 (0.05, 0.14) 0.03 yes
80 4 0.18 - 0.5X 0.57 -0.14 (-0.77, 0.33) -0.10 (-1.01, 0.81) -0.01 (-0.13, 0.11) 0.53 (-1.39, 2.42) 0.01 (-0.02, 0.03) 0.09 (0.05, 0.18) 0.07 yes

140 4 0.08 - 0.5X 0.57 -0.19 (-0.96, 0.34) -0.08 (-1.19, 0.95) -0.01 (-0.16, 0.12) 0.39 (-1.39, 1.87) 0.00 (-0.01, 0.01) 0.11 (0.04, 0.21) 0.10 yes

CV Total N
Probability 

CV
 N.total > 0.15

Protocol meets
Management
Requirements

Simulation Parameters

Bias in alpha.lam Bias in alpha1.lam Bias in p Bias in Total N Bias in N.site



Table 42. Results of simulations evaluating the effects of a covariate on estimates of abundance for the recommended protocols for the 
hierarchical distance sampling with line transects under 6 different scenarios. Mean (95% credible interval) for bias and coefficient of 
variation from 500 simulation runs for each suite of parameters. Different scenarios include combinations of high, average, and low 
abundance paired with either average or high detection. R = number of transect sites, λ = mean abundance per site, sigma = mean 
sigma; CV = coefficient of variation for total population size (Total N), N.site = estimated number of dusky grouse per survey site, 
alpha.lam = intercept from linear covariate model, alpha1.lam = slope coefficient (i.e. effect size) estimating linear relationship 
between local abundance and site covariate X. 
 

 
*Table printed as image here to fit the page; a spreadsheet of this table is available in provided supplemental materials 

R λ sigma

25 0.31 - 1X 42 -0.05 (-0.33, 0.19) -0.02 (-0.39, 0.33) 2.00 (-5.83, 10.76) -1.44 (-32.52, 31.34) -0.06 (-1.30, 1.25) 0.12 (0.10, 0.14) 0.00 yes
40 0.18 - 1X 42 -0.06 (-0.33, 0.20) -0.03 (-0.42, 0.30) 2.18 (-5.07, 10.98) -1.46 (-29.90, 30.30) -0.04 (-0.75, 0.76) 0.12 (0.11, 0.14) 0.01 yes
90 0.08 - 1X 42 -0.05 (-0.34, 0.21) -0.02 (-0.38, 0.36) 2.20 (-5.62, 11.67) -3.24 (-33.06, 26.71) -0.04 (-0.37, 0.30) 0.12 (0.11, 0.14) 0.00 yes
20 0.31 - 1X 51 -0.07 (-0.32, 0.19) -0.01 (-0.38, 0.31) 5.72 (-7.13, 21.23) -3.87 (-28.62, 21.93) -0.19 (-1.43, 1.10) 0.12 (0.10, 0.14) 0.02 yes
35 0.18 - 1X 51 -0.07 (-0.37, 0.20) -0.02 (-0.38, 0.34) 5.01 (-7.51, 21.35) -3.35 (-28.62, 28.19) -0.10 (-0.82, 0.81) 0.12 (0.10, 0.14) 0.01 yes
70 0.08 - 1X 51 -0.07 (-0.37, 0.21) -0.01 (-0.39, 0.35) 4.91 (-7.14, 20.40) -2.61 (-25.38, 22.62) -0.04 (-0.36, 0.32) 0.13 (0.11, 0.15) 0.04 yes
25 0.31 - 0.5X 42 -0.05 (-0.32, 0.21) -0.03 (-0.42, 0.32) 2.09 (-5.65, 12.64) -1.96 (-30.25, 26.81) -0.08 (-1.21, 1.07) 0.13 (0.11, 0.14) 0.01 yes
40 0.18 - 0.5X 42 -0.06 (-0.36, 0.21) -0.01 (-0.40, 0.32) 3.08 (-5.95, 15.07) -3.13 (-30.61, 27.95) -0.08 (-0.77, 0.70) 0.13 (0.12, 0.15) 0.02 yes
90 0.08 - 0.5X 42 -0.05 (-0.34, 0.22) -0.01 (-0.40, 0.36) 2.65 (-6.20, 14.01) -1.68 (-30.45, 30.50) -0.02 (-0.34, 0.34) 0.13 (0.12, 0.15) 0.02 yes
20 0.31 - 0.5X 51 -0.07 (-0.36, 0.22) -0.01 (-0.41, 0.36) 5.50 (-7.29, 22.14) -2.59 (-26.33, 24.25) -0.13 (-1.32, 1.21) 0.13(0.11, 0.15) 0.04 yes
35 0.18 - 0.5X 51 -0.06 (-0.35, 0.18) -0.01 (-0.37, 0.38) 6.17 (-7.22, 21.61) -3.55 (-25.22, 20.53) -0.10 (-0.72, 0.59) 0.13 (0.11, 0.14) 0.02 yes
70 0.08 - 0.5X 51 -0.07 (-0.39, 0.22) -0.01 (-0.38, 0.36) 5.91 (-9.03, 22.60) -2.09 (21.41, 23.72) -0.03 (-0.31, 0.34) 0.13 (0.11, 0.15) 0.08 yes

CV Total N
Probability 

CV
 N.total > 0.15

Protocol meets
 Management
 Requirements

Simulation Parameters
Bias in alpha λ Bias in alpha1 λ Bias in sigma Bias in Total N Bias in N.site



 

Figure 1. Predicted relative probability of use for the covariates in the RSF model with 95% 
confidence intervals (dashed lines) while all other covariates held at their average value.  

 



 

Figure 2. Variable importance plot for the top 10 important variables from the random forest 
model. Variable importance was calculated as the impact of removing a variable on the model or 
mean decrease in accuracy.   

 



 

Figure 3. Partial dependency plots for the variables of greatest importance for fitting the random 
forest model to evaluate the marginal effect of a variable on the random forest’s predictions. 
 
 
 
 
 
 
 
 



  
 
Figure 4. Histogram of the AUC values from the repeated k-fold cross validation for the resource 
selection model (top) and random forest model (bottom). Average AUC for the RSF model was 
0.89 (95% CI: 0.85-0.93) and for the RF model was 0.87 (95% CI: 0.82, 0.92).  



 

 
Figure 5. Proportion of Dusky Grouse locations in five bins of increasing relative probability of 
use values for resource selection function values (top), random forest model values (bottom) that 
we used to train (n = 132) and test (n = 193; 1 location was outside MT) the different models of 
predicted Dusky Grouse habitat. A good predictive model will assign most of the training and 
test Dusky Grouse locations to medium-high or high categories of predicted use.  



         
     

                           
Figure 6. Predicted Dusky Grouse habitat (red) for the resource selection function map (top left) and random forest map (top right). 
Predicted Dusky Grouse habitat for the ensemble model (bottom left) where red represents habitat with high probability of use, orange 
represents habitat with medium-high probability of use, and gray represents non-habitat. Areas of consensus and differences (bottom 
right) in predicted Dusky Grouse habitat between the RSF and RF models, where areas both models predict habitat are red, where only 
RSF predicted habitat are purple, areas where only RF predicted habitat are blue, and areas where both models predict non-habitat are 
gray. MFWP administrative regions are delineated in gray (left top to bottom: Regions 1, 2, 3; center top to bottom: Regions 4, 5; and 
right top to bottom: 6, 7). 
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Figure 7. Daily survey effort represented by the number of surveys completed each day for dusky grouse surveys conducted in spring 
and summer 2019. 



 
Figure 8. The impacts of electronic playback on probability of detecting a dusky grouse with 
95% confidence intervals. Data from spring 2019 dusky grouse surveys, where female calls were 
used to elicit male dusky grouse responses.  
 

 
Figure 9. Local abundance estimates evaluated using single season N-mixture models of dusky 
grouse with 95% confidence intervals for point counts conducted along different route types: off-
trail, road, and trail. Data for the off-trail transects come from the 2019 pilot year surveys 
conducted in MFWP region 3. Data for the road and trail transects comes from the 2020 and 
2021 surveys conducted across western Montana. 
 
 
 



 
 
Figure 10. Probability of detection estimates evaluated using single season N-mixture models of 
dusky grouse with 95% confidence intervals for point counts conducted along different route 
types: off-trail, road, and trail. Data for the off-trail transects come from the 2019 pilot year 
surveys conducted in MFWP region 3. Data for the road and trail transects comes from the 2020 
and 2021 surveys conducted across western Montana. 
 
 
 
 
 
 
 



 
 
Figure 11. Standardized effects with 95% confidence intervals of survey conditions on the 
probability of detection from a single-season N-mixture model where abundance (per point count 
area) was held constant and detection was modeled based on precipitation, cloud cover, noise 
level, day during the sampling period, minutes since sunrise, temperature, and wind speed. 
Reference level for noise level is noise level: 0, for precipitation is none, and for cloud cover is 
0-15%. 
 

 
Figure 12. Estimated probability of detection for different cloud cover categories: 0-15% cloud 
cover, 16-50% cloud cover, 51-80% cloud cover, 81-100% cloud cover while minutes since 
sunrise, day during the sampling period, and temperature were held constant, wind was held at 
minimum wind speed, precipitation was held at none, and noise level was held at 0. 



 

 

 
Figure 13. Effect of day during the survey season on probability of detection, sigma, or availability for 4 models. 3 models for point 
counts: N-mixture, hierarchical distance sampling, hierarchical distance sampling with time removal. 1 model for line transects: 
hierarchical distance sampling. Probability of detection was highest for the N-mixture model on day 34 (May 13th, sigma was highest 
for the hierarchical distance sampling for point counts on day 31 (May 10th), sigma was highest for hierarchical distance sampling for 
line transects on day 30 (May 9th), and availability was highest on day 33 (May 12th) for hierarchical distance sampling with time 
removal models. 



 

 
Figure 14. Standardized effects with 95% confidence intervals of survey conditions on sigma 
(used to estimate the detection function) from a hierarchical distance sampling model for point 
counts where abundance (per point count area) was held constant and sigma was modeled based 
on precipitation, cloud cover, noise level, day during the sampling period, minutes since sunrise, 
temperature, and wind speed. Reference level for noise level is noise level: 0, for precipitation is 
none, and for cloud cover is 0-15%. 
 
 
 
 



 
Figure 15. Standardized effects with 95% confidence intervals of survey conditions on 
probability of availability from a hierarchical distance sampling with time removal model for 
point counts where abundance (per point count area) was held constant, sigma (for the detection 
function) was modeled based on noise level, and availability was modeled based on 
precipitation, cloud cover, noise level, day during the sampling period, minutes since sunrise, 
temperature, and wind speed. Reference level for noise level is noise level: 0, for precipitation is 
fog, and for cloud cover is 0-15%. 
 
 
 
 



 
Figure 16. Standardized effects with 95% confidence intervals of noise level on sigma from a 
hierarchical distance sampling with time removal model for point counts where abundance (per 
point count area) was held constant, sigma (for the detection function) was modeled based on 
noise level, and availability was modeled based on precipitation, cloud cover, noise level, day 
during the sampling period, minutes since sunrise, temperature, and wind speed. Reference level 
for noise level is noise level: 0, for precipitation is fog, and for cloud cover is 0-15%. 
 

 
Figure 17. Abundance estimates per point count with 95% confidence intervals across FWP 
Regions 1-5 based on N-mixture and Distance Sampling model where detection (p or sigma) was 
held constant and abundance was allowed to vary by region. There is also average abundance 
from N-mixture and Distance Sampling models where both detection (p or sigma) and 
abundance was held constant. 



 

 
Figure 18. Abundance estimates per point count with 95% confidence intervals across FWP 
Regions 1-5 based on hierarchical distance sampling models with a half-normal detection 
function and a hazard-rate detection function where detection (sigma) was held constant and 
abundance was allowed to vary by region. There is also average abundance from the distance 
sampling models where both detection (sigma) and abundance were held constant.  
 



      

         

 

          
 
Figure 19. Coefficient of variation for estimates of population size for number of sites visited 
under different protocols for N-mixture and hierarchical distance sampling models under 
different scenarios with varying abundance and average detection. For the N-mixture model, 
protocols with 2, 3, or 4 visits are evaluated. NM = N-mixture model, HDS = hierarchical 
distance sampling model, HDS TR = hierarchical distance sampling with time removal model. 
Horizontal line represents the goal of a coefficient of variation of 0.15 or lower.  
 
 



 

 

 
Figure 20. Coefficient of variation for estimates of population size for number of sites visited 
under different protocols for N-mixture and hierarchical distance sampling models under 
different scenarios with varying abundance and high detection. For the N-mixture model, 
protocols with 2, 3, or 4 visits are evaluated. NM = N-mixture model, HDS = hierarchical 
distance sampling model, HDS TR = hierarchical distance sampling with time removal model. 
Horizontal line represents the goal of a coefficient of variation of 0.15 or lower.  



 
Figure 21. Parameter bias over 500 simulations under 6 scenarios with varying abundance and 
detection/sigma. Parameters are average local/point count abundance (lambda) and abundance at 
each site (N.site). Scenarios include, HA = high abundance, average detection, AA = average 
abundance, average detection, LA = low abundance, average detection, HH = high abundance, 
high detection, AH = average abundance, high detection, and LH = low abundance, high 
detection. There 8 models evaluated: HDS = hierarchical distance sampling for point counts, 
HDS.TR = hierarchical distance sampling with time removal, Line.5000 = hierarchical distance 
sampling for line transects 5000m in length, Line.Average = hierarchical distance sampling for 
line transects of average (2,681m) length, Naïve = naïve model, and NM with varying visits = N-
mixture model with either 2, 3, or 4 visits. 
  
 



 
Figure 22. Bias over 500 simulations under 6 scenarios with varying abundance and 
detection/sigma for probability of detection (N-mixture model) and sigma (all hierarchical 
distance sampling models). Scenarios include, HA = high abundance, average detection, AA = 
average abundance, average detection, LA = low abundance, average detection, HH = high 
abundance, high detection, AH = average abundance, high detection, and LH = low abundance, 
high detection. There 7 models evaluated: HDS = hierarchical distance sampling for point 
counts, HDS.TR = hierarchical distance sampling with time removal, Line.5000 = hierarchical 
distance sampling for line transects 5000m in length, Line.Average = hierarchical distance 
sampling for line transects of average (2,681m) length, and NM with varying visits = N-mixture 
model with either 2, 3, or 4 visits. 



 
Figure 23. Bias over 500 simulations under 6 scenarios with varying abundance and 
detection/sigma for total population size (Total N). Scenarios include, HA = high abundance, 
average detection, AA = average abundance, average detection, LA = low abundance, average 
detection, HH = high abundance, high detection, AH = average abundance, high detection, and 
LH = low abundance, high detection. There 7 models evaluated: HDS = hierarchical distance 
sampling for point counts, HDS.TR = hierarchical distance sampling with time removal, 
Line.5000 = hierarchical distance sampling for line transects 5000m in length, Line.Average = 
hierarchical distance sampling for line transects of average (2,681m) length, and NM with 
varying visits = N-mixture model with either 2, 3, or 4 visits. 
 



 

 

 
Figure 24. Bias over 500 simulations under 6 scenarios with varying abundance and 
detection/sigma for total population size (Total N). Scenarios are HA = high abundance, average 
detection, AA = average abundance, average detection, LA = low abundance, average detection, 
HH = high abundance, high detection, AH = average abundance, high detection, and LH = low 
abundance, high detection. Models evaluated are the ‘best’ protocols from the N-mixture models 
with 4 visits. 



 



 

  
Figure 25. Coefficient of variation with 95% credible intervals for average transect length 
(2,681m) and 5,000m transect length across differing number of sites visited for six different 
scenarios where abundance varied (high, average, and low) and detection varied (average and 
high). 



  

 

 
Figure 26. Bias over 500 simulations under 6 scenarios with varying abundance and detection/sigma for total population size (Total 
N). Scenarios are HA = high abundance, average detection, AA = average abundance, average detection, LA = low abundance, 
average detection, HH = high abundance, high detection, AH = average abundance, high detection, and LH = low abundance, high 
detection. Models evaluated are the ‘best’ protocols from the N-mixture models with 4 visits and hierarchical distance sampling for 
line transects (2,681m long) with either a strong or weak covariate effect on lambda. Alpha.lam = intercept from linear covariate 
model, alpha1.lam = slope coefficient estimating linear relationship between local dusky grouse abundance and site covariate X. 
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SUPPLEMENTARY INFORMATION 

S1. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for point counts analyzed using N-mixture models where local 
abundance and probability of detection were kept constant.  

# Function for simulating and analyzing data using a N-mixture model for point counts in which average 
local abundance and probability of detection are kept constant. 
 
# Code adapted from:  
#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of distribution, 
abundance, and species richness in R and BUGS. Academic Press, London, United Kingdom. 
# Kery, M. and M. Schaub. 2012. Bayesian population analysis using WinBUGS. A hierarchical 
perspective. Elsevier Inc. 
 
# S = number of spatial reps/ number of sites 
# V = number of visits at each site (temporal reps) 
# lambda = average local abundance 
# prob = probability of detection 
# num.sim = number of simulations 
 
#Simulate Data - Nmixture model. Parameters estimated: lambda and probability of detection 
Sim.Nmix.fn <- function(S=S, V=V, lambda = lambda, prob = prob, num.sim = num.sim) { 
  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 
   
  #*************** 
  # Define Bayesian Model  
  #*************** 
   
  # Specify model in Bugs language 
  sink("NMmodel.txt") 
  cat(" 
    model { 
     
    # Priors 
       lambda ~ dgamma(0.005, 0.005)      # Standard vague prior for lambda 
       p ~ dunif(0, 1) #vague prior for probability of detection 
     
    # Likelihood 
       # Biological model for true abundance 
          for (i in 1:S) { 
            N[i] ~ dpois(lambda) #describes spatial variation in abundance (N) 
        # Observation model for replicated counts 
           for (j in 1:V) { 
             y[i,j] ~ dbin(p, N[i]) #count (observation) for each visit at each site 
           } # j 
         } # i 
         
        #Derived parameters 
        Ntotal <- sum(N[]) #total of abundance at each site (N) 
    } 



    ",fill = TRUE) 
  sink() 
   
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
   
  num.sim <- num.sim 
   
  # Create empty vectors to store results from replicated datasets 
  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 
  sd.bias.Nsite <- vector("list",num.sim) 
  baye.pvalue.Nsite <- vector("list",num.sim)  
   
  m.bias.p <- vector("list",num.sim) #bias in probability of detection 
  sd.bias.p <- vector("list",num.sim) 
  baye.pvalue.p <- vector("list",num.sim) 
   
  m.bias.Ntot <- vector("list",num.sim) #bias in total N 
  sd.bias.Ntot <- vector("list",num.sim) 
  baye.pvalue.Ntot <- vector("list",num.sim) 
   
  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 
  sd.bias.lam <- vector("list",num.sim) 
  baye.pvalue.lam <- vector("list",num.sim) 
   
   
  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at site) 
  sd.CV.lam <- vector("list",num.sim) 
  prop.CV.lam <- vector("list", num.sim) 
   
  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 
  sd.CV.Ntot <- vector("list",num.sim) 
  prop.CV.Ntot <- vector("list", num.sim) 
 
  #******************** 
  # Start Simulation 
  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    #Simulate data 
    S = S  # spatial reps 
    V = V  # temporal reps 
    lambda = lambda # mean abundance at site 
    prob = prob # probablity of detection 
     
    # Create structure to contain counts 
    y <- array(dim = c(S,V)) 
     



    # sample abundance from a Poisson (lambda = 0.3) 
    N <- rpois(n=S, lambda=lambda) 
     
    # sample counts from a Binomial distribution (N, prob = 0.3) 
    for (j in 1:V){ 
      y[,j] <- rbinom(n = S, size = N, prob = prob) 
    } 
     
    # Bundle data 
    win.data <- list(y = y, S = nrow(y), V = ncol(y)) 
     
    # initial values 
    Nst <- apply(y, 1, max) + 1 # This line is vital 
    inits <- function() list(N = Nst) 
     
    # Define parameters to be monitored 
    params <- c("lambda", "p", "Ntotal", "N") 
     
    # MCMC settings 
    ni <- 5000 
    nt <- 1 
    nb <- 1000 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "NMmodel.txt", n.chains = nc, 
                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### Evaluate bias #### 
    #************************************** 
    #Bias in N (site specific abundance) 
    bias.Nsite <- out$mean$N - N #calculates bias 
    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 
    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
    baye.pvalue.Nsite[k] <-mean(N > out$mean$N)  #Bayesian P-value (proportion of simulations where 
the true abundance was greater than the estimated abundance - values close to 0 or 1 indicate significant 
bias) 
     
    #Bias in lambda (average local abundance) - descriptions same as above 
    bias.lam <- out$mean$lambda - lambda 
    m.bias.lam[k] <- mean(bias.lam) 
    sd.bias.lam[k] <- sd(bias.lam) 
    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 
     



    #Bias in p - descriptions same as above 
    bias.p <- out$mean$p - prob 
    m.bias.p[k] <- mean(bias.p) 
    sd.bias.p[k] <- sd(bias.p) 
    baye.pvalue.p[k] <- mean(prob > out$mean$p) 
     
    #Bias in Ntotal (total population size) - descriptions same as above 
    bias.Ntot <- out$mean$Ntotal - sum(N) 
    m.bias.Ntot[k] <- mean(bias.Ntot) 
    sd.bias.Ntot[k] <- sd(bias.Ntot) 
    baye.pvalue.Ntot[k] <- mean(sum(N) > out$mean$Ntotal) 
     
    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 
    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 
    m.CV.Ntot[k] <- mean(CV.Ntot) 
    sd.CV.Ntot[k] <- sd(CV.Ntot) 
    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) 
    CV.lam <- out$sd$lambda/out$mean$lambda 
    m.CV.lam[k] <- mean(CV.lam) 
    sd.CV.lam[k] <- sd(CV.lam) 
    prop.CV.lam[k] <- mean(CV.lam < 0.15) 
     
  }  ) #This will be the end of the simulations 
     
  #******************** 
  # Summary of Results  
  #******************** 
  results <- c("lambda", "prob", "N.total", "N.site", "N.total.CV", "lambda.CV", "Prob.CV.Ntot", 
"Prob.CV.lambda") 
  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.p))), (mean(unlist(m.bias.Ntot))), 
(mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), (mean(unlist(m.CV.lam))), NA, NA),2) 
   
  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.p), 0.05)), 
(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), (quantile(unlist(m.CV.Ntot), 
0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 95% credible interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.p), 0.95)), 
(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), (quantile(unlist(m.CV.Ntot), 
0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 95% credible interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 
(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.p))), 
(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2)  
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a 
table of results 
  print(sim.results) 



 
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that six plots can be created in one image 
  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Nsite), xlim=c(-1,1), breaks=120, main="", ylab="N.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.p), xlim=c(-0.5,0.5), main="", ylab="Detection prob.")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Ntot), xlim=c(-100,100), main="", ylab="Total N")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.Ntot), xlim=c(0,0.5), main="", ylab="CV Ntotal")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.lam), xlim=c(0,0.5), main="", ylab="CV lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = unlist(m.bias.lam), 
m.bias.p = unlist(m.bias.p), m.bias.Ntot = unlist(m.bias.Ntot), m.CV.Ntot = unlist(m.CV.Ntot), m.CV.lam 
= unlist(m.CV.lam), lambda = lambda, prob = prob, S = S, V = V, num.sim = num.sim)) 
} 
  



S2. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for point counts analyzed using N-mixture models where local 
abundance and probability of detection were kept constant, and point counts visits were 
correlated. 

# Functions for simulating data for four visits per site that are correlated where visits 1 & 2 have a 
correlation of 0.67, 1 & 3 have a correlation of 0.41, 1 & 4 have a correlation of 0.44, 2 & 3 have a 
correlation of 0.48, 2 & 4 have a correlation of 0.47, and 3 & 4 have a correlation of 0.67. Correlations 
are based off point counts from 2020 and 2021 data where all counts occurred on the same day and visits 
1 & 2, and visits 3 & 4 were back-to-back. There are two functions: rcorrbinom which simulates the 
correlated counts and Sim.Nmix.fn which uses rcorrbinom to simulate correlated data and then analyzes 
the data using an N-mixture model. Average local abundance (lambda) across and probability of detection 
are kept constant.  
 
# rcorrbinom code adapted from:  
#https://stats.stackexchange.com/questions/284996/generating-correlated-binomial-random-variables 
 
# Sim.Nmix.fn code adapted from: 
#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of distribution, 
abundance, and species richness in R and BUGS. Academic Press, London, United Kingdom. 
# Kery, M. and M. Schaub. 2012. Bayesian population analysis using WinBUGS. A hierarchical 
perspective. Elsevier Inc. 
 
# S = number of spatial reps/ number of sites 
# V = number of visits at each site (temporal reps) 
# lambda = average local abundance 
# prob = probability of detection 
# num.sim = number of simulations 
 
# n = number of observations 
# size = number of trials 
# prob = probability of detection 
# corr1 = correlation between visit 1 & visit 2: 0.67 
# corr2 = correlation between visit 2 & visit 3: 0.47 
# corr3 = correlation between visit 3 & visit 4: 0.67 
 
# Creates data where visit 1 is correlated with visit 2, visit 2 is correlated with visit 3, and visit 3 is 
correlated with visit 4 
# Creates correlated Bernoulli random variables, which frequently resulted in correlation between the 
binomial values 
rcorrbinom <- function(n, size = size, prob, corr1 = corr1, corr2 = corr2, corr3 = corr3) { 
  #Check inputs 
  if (!is.numeric(n))             { stop('Error: n must be numeric') } 
  if (length(n) != 1)             { stop('Error: n must be a single number') } 
  if (as.integer(n) != n)         { stop('Error: n must be a positive integer') } 
  if (n < 1)                      { stop('Error: n must be a positive integer') } 
  if (!is.numeric(size))          { stop('Error: n must be numeric') } 
  if (length(size) != 1)          { stop('Error: n must be a single number') } 
  if (as.integer(size) != size)   { stop('Error: n must be a positive integer') } 
  if (size < 1)                   { stop('Error: n must be a positive integer') } 
  if (!is.numeric(prob))         { stop('Error: prob1 must be numeric') } 



  if (length(prob) != 1)         { stop('Error: prob1 must be a single number') } 
  if (prob < 0)                  { stop('Error: prob1 must be between 0 and 1') } 
  if (prob > 1)                  { stop('Error: prob1 must be between 0 and 1') } 
  if (!is.numeric(corr1))          { stop('Error: corr must be numeric') } 
  if (length(corr1) != 1)          { stop('Error: corr must be a single number') } 
  if (corr1 < -1)                  { stop('Error: corr must be between -1 and 1') } 
  if (corr1 > 1)                   { stop('Error: corr must be between -1 and 1') } 
  if (!is.numeric(corr2))          { stop('Error: corr must be numeric') } 
  if (length(corr2) != 1)          { stop('Error: corr must be a single number') } 
  if (corr2 < -1)                  { stop('Error: corr must be between -1 and 1') } 
  if (corr2 > 1)                   { stop('Error: corr must be between -1 and 1') } 
  if (!is.numeric(corr3))          { stop('Error: corr must be numeric') } 
  if (length(corr3) != 1)          { stop('Error: corr must be a single number') } 
  if (corr3 < -1)                  { stop('Error: corr must be between -1 and 1') } 
  if (corr3 > 1)                   { stop('Error: corr must be between -1 and 1') } 
   
    #Compute probabilities 
  #Between visit 1 & visit 2 
  P00.1   <- (1-prob)*(1-prob) + corr1*sqrt(prob*prob*(1-prob)*(1-prob)) 
  P01.1   <- 1 - prob - P00.1 
  P10.1   <- 1 - prob - P00.1 
  P11.1   <- P00.1 + prob + prob - 1 
  PROBS.1 <- c(P00.1, P01.1, P10.1, P11.1) 
  if (min(PROBS.1) < 0)       { stop('Error: corr is not in the allowable range') } 
   
  #Between visit 2 & visit 3 
  P00.2   <- (1-prob)*(1-prob) + corr2*sqrt(prob*prob*(1-prob)*(1-prob)) 
  P01.2   <- 1 - prob - P00.2 
  P10.2   <- 1 - prob - P00.2 
  P11.2   <- P00.2 + prob + prob - 1 
  PROBS.2a <- c(P00.2, P01.2) # First one is zero 
  PROBS.2b <- c(P10.2, P11.2) # First one is not zero 
  if (min(PROBS.2a) < 0)       { stop('Error: corr is not in the allowable range')} 
  if (min(PROBS.2b) < 0)       { stop('Error: corr is not in the allowable range')} 
   
  #Between visit 3 & visit 4 
  P00.3   <- (1-prob)*(1-prob) + corr3*sqrt(prob*prob*(1-prob)*(1-prob)) 
  P01.3   <- 1 - prob - P00.3 
  P10.3   <- 1 - prob - P00.3 
  P11.3   <- P00.3 + prob + prob - 1 
  PROBS.3a <- c(P00.3, P01.3) # First one is zero 
  PROBS.3b <- c(P10.3, P11.3) # First one is not zero 
  if (min(PROBS.3a) < 0)       { stop('Error: corr is not in the allowable range')} 
  if (min(PROBS.3b) < 0)       { stop('Error: corr is not in the allowable range')} 
   
  #Generate the output 
  # Generates counts for visits 1 & 2 
  # sample.int = n (number of items to choose from), size (number of items to choose), replace (sample 
with replacement), prob (vector of probability weights for obtaining the elements of the vector beign 
sampled) 
  RAND.1 <- array(sample.int(4, size = n*size, replace = TRUE, prob = PROBS.1), 



                  dim = c(n, size)) #produces count group, 1 = 00, 2 = 01, 3 = 10 4 = 11 
  VALS.1 <- array(0, dim = c(2, n, size)) # will hold results of each trial so could have multiple arrays if 
size > 1 
  OUT.1  <- array(0, dim = c(2, n)) # will hold counts 
   
  for (i in 1:n)    {  
    for (j in 1:size) {  
      VALS.1[1,i,j] <- (RAND.1[i,j] %in% c(3, 4)) #is Rand.1 in count groups 3 or 4 (counts 10 or 11) 
      VALS.1[2,i,j] <- (RAND.1[i,j] %in% c(2, 4)) }  # is Rand.1 in count groups 2 or 4 (counts 01 or 11) 
    OUT.1[1, i]   <- sum(VALS.1[1,i,]) #sums number of detections in first visit -> count for visit 1 
    OUT.1[2, i]   <- sum(VALS.1[2,i,]) #sums number of detections in second visit -> count for visit 2 
    } 
   
  # Section generates counts for visits 2 & 3, where visit 2 counts are identical to the previous visit 2 
counts 
  RAND.2 <- array(0, dim = c(n, n*size)) #creates array filled with zeros 
  for (i in 1:n) { 
    for (j in 1:size) { 
      if (VALS.1[2,i,j] > 0) { #if for visit 2, count is greater than 0 
        RAND.2[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.2b) #place in count group 
        if (RAND.2[i,j] == 1) { 
          RAND.2[i,j] <- 3 #if in group 1, gets placed in overall group 3 (1,0) 
        } 
        else { 
          RAND.2[i,j] <- 4 #otherwise placed in overall group 4 (1,1) 
        } 
      } 
      else { 
        RAND.2[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.2a) #place in count group 
1(0,0) or 2(0,1) 
         
      } 
    } 
  } 
   
  VALS.2 <- array(0, dim = c(2, n, size)) #will hold results of each trial  
  OUT.2  <- array(0, dim = c(2, n)) #will hold counts 
   
  for (i in 1:n)    {  
    for (j in 1:size) {  
      VALS.2[1,i,j] <- (RAND.2[i,j] %in% c(3, 4)) #is Rand.2 in probability groups 3 or 4 (counts 10 or 
11) 
      VALS.2[2,i,j] <- (RAND.2[i,j] %in% c(2, 4)) } # is Rand.2 in probability groups 2 or 4 (counts 01 or 
11) 
    OUT.2[1, i]   <- sum(VALS.2[1,i,]) #sums number of detections in second visit 
    OUT.2[2, i]   <- sum(VALS.2[2,i,]) #sums number of detections in third visit 
  } 
   
  # Section generates counts for visits 3 & 4, where visit 3 counts are identical to the previous visit 3 
counts 
  RAND.3 <- array(0, dim = c(n, n*size)) #creates array filled with zeros 



  for (i in 1:n) { 
    for (j in 1:size) { 
      if (VALS.2[2,i,j] > 0) { #if for visit 3, count is greater than 0 
        RAND.3[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.3b) #place in count group 
        if (RAND.3[i,j] == 1) { 
          RAND.3[i,j] <- 3 #if in group 1, gets placed in overall group 3 (1,0) 
        } 
        else { 
          RAND.3[i,j] <- 4 #otherwise placed in overall group 4 (1,1) 
        } 
      } 
      else { 
        RAND.3[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.3a) #place in count group 
1(0,0) or 2(0,1) 
         
      } 
    } 
  } 
   
  VALS.3 <- array(0, dim = c(2, n, size)) #will hold results of each trial  
  OUT.3  <- array(0, dim = c(2, n)) #will hold counts 
   
  for (i in 1:n)    {  
    for (j in 1:size) {  
      VALS.3[1,i,j] <- (RAND.3[i,j] %in% c(3, 4)) #is Rand.3 in probability groups 3 or 4 (counts 10 or 
11) 
      VALS.3[2,i,j] <- (RAND.3[i,j] %in% c(2, 4)) } # is Rand.3 in probability groups 2 or 4 (counts 01 or 
11) 
    OUT.3[1, i]   <- sum(VALS.3[1,i,]) #sums number of detections in third visit 
    OUT.3[2, i]   <- sum(VALS.3[2,i,]) #sums number of detections in fourth visit 
  } 
   
  # Give output- counts per visit per site 
  y <- array(dim = c(n,4)) 
  y[,1] <- OUT.1[1,] 
  y[,2] <- OUT.1[2,] 
  y[,3] <- OUT.2[2,] 
  y[,4] <- OUT.3[2,] 
  y 
} 
 
# S = number of sites 
# V = number of visits 
# lambda = mean local abundance 
# prob = probability of detection 
# num.sim = number of simulations 
# The code doesn't work perfectly for outputting correlated counts, so the corr values are the input to get 
the correlation we want which is the rho values 
 
#Simulate Data - Nmixture model. Parameters estimated: lambda and probability of detection 
# corr1 & corr3 = 0.30, corr2 = -0.20 



Sim.Nmix.fn <- function(S=S, V=V, lambda = lambda, prob = prob, num.sim = num.sim, corr1 = corr1, 
corr2 = corr2, corr3 = corr3, rho1 = rho1, rho2 = rho2, rho3 = rho3) { 
  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 
   
  #*************** 
  # Define Bayesian Model  
  #*************** 
   
  # Specify model in Bugs language 
  sink("modelCC.txt") 
  cat(" 
    model { 
     
    # Priors 
       lambda ~ dgamma(0.005, 0.005)      # Standard vague prior for lambda 
       p ~ dunif(0, 1) #vague prior for probability of detection 
     
    # Likelihood 
       # Biological model for true abundance 
          for (i in 1:S) { 
            N[i] ~ dpois(lambda) #describes spatial variation in abundance (N) 
        # Observation model for replicated counts 
           for (j in 1:V) { 
             y[i,j] ~ dbin(p, N[i]) #count (observation) for each visit at each site 
           } # j 
         } # i 
         
        #Derived parameters 
        Ntotal <- sum(N[]) #total of abundance at each site (N) 
    } 
    ",fill = TRUE) 
  sink() 
   
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
   
  num.sim <- num.sim 
   
  # Create empty vectors to store results from replicated datasets 
  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 
  sd.bias.Nsite <- vector("list",num.sim) 
  baye.pvalue.Nsite <- vector("list",num.sim)  
   
  m.bias.p <- vector("list",num.sim) #bias in probability of detection 
  sd.bias.p <- vector("list",num.sim) 
  baye.pvalue.p <- vector("list",num.sim) 
   
  m.bias.Ntot <- vector("list",num.sim) #bias in total N 
  sd.bias.Ntot <- vector("list",num.sim) 
  baye.pvalue.Ntot <- vector("list",num.sim) 



   
  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 
  sd.bias.lam <- vector("list",num.sim) 
  baye.pvalue.lam <- vector("list",num.sim) 
   
    m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at site) 
  sd.CV.lam <- vector("list",num.sim) 
  prop.CV.lam <- vector("list", num.sim) 
   
  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 
  sd.CV.Ntot <- vector("list",num.sim) 
  prop.CV.Ntot <- vector("list", num.sim) 
 
  #******************** 
  # Start Simulation 
  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
 
    system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    #Simulate data 
    S = S  # spatial reps 
    V = V  # temporal reps 
    lambda = lambda # mean abundance at site 
    prob = prob # probablity of detection 
    rho1 = rho1 # desired correlation 
    rho2 = rho2 
    rho3 = rho3 
    corr1 = corr1 # modified correlation 
    corr2 = corr2 
    corr3 = corr3 
     
    # Create structure to contain counts 
    y <- array(dim = c(S,V)) 
     
    for(f in 1:1000){ #if correlated counts fail to be created, then it tries again (prevents simulation from 
crashing) 
      N <- rpois(n=S, lambda=lambda) # sample abundance from a Poisson distribution 
    # sample counts from a Binomial distribution  
    for(m in 1:200000) { #tries for creating count from simulated abundance (N) 
       
      my <- array(NA,dim = c(S,4)) #creates empty array for counts 
      for (i in 1:S){ 
        NN <- N[i] 
        if (NN > 0){ #if actual abundance is > 0, sample using the rcorrbinom function to create counts 
          ymy <- rcorrbinom(n = 1, size = NN, prob = prob, corr1 = 0.30, corr2 = -0.20, corr3 = 0.30) 
          my[i,] <- ymy 
        } 
        else { # if actual abundance is 0, then the counts are automatically 0 
          my[i,] <- 0 



        } 
      } 
       
      data.y.cor <- cor(my) # get correlation of count data and make sure that it is within 0.05 of the desired 
correlation 
      cor1 <- (data.y.cor[1,2] >= (rho1 - 0.05) & data.y.cor[1,2] <= (rho1 + 0.05))  
      cor2 <- (data.y.cor[2,3] >= (rho2 - 0.05) & data.y.cor[2,3] <= (rho2 + 0.05)) 
      cor3 <- (data.y.cor[3,4] >= (rho3 - 0.05) & data.y.cor[3,4] <= (rho3 + 0.05)) 
      cor13 <- (data.y.cor[1,3] >= (0.41 - 0.05) & data.y.cor[1,3] <= (0.41 + 0.05)) 
      cor14 <- (data.y.cor[1,4] >= (0.44 - 0.05) & data.y.cor[1,4] <= (0.44 + 0.05)) 
      cor24 <- (data.y.cor[2,4] >= (0.47 - 0.05) & data.y.cor[2,4] <= (0.47 + 0.05)) 
       
      if (cor1 %in% NA){ 
        cor1 <- FALSE 
      } 
      if (cor2 %in% NA){ 
        cor2 <- FALSE 
      } 
      if (cor3 %in% NA){ 
        cor3 <- FALSE 
      } 
      if (cor13 %in% NA){ 
        cor13 <- FALSE 
      } 
      if (cor14 %in% NA){ 
        cor14 <- FALSE 
      } 
      if (cor24 %in% NA){ 
        cor24 <- FALSE 
      } 
       
      # if count data has the correct correlation then export the count data and break the for loop 
      if (cor1 == TRUE & cor2 == TRUE & cor3==TRUE & cor13==TRUE & cor14==TRUE & 
cor24==TRUE){ 
        y <- my 
        cat("iteration ", m) #print how many iterations it took get count data 
        break 
      } 
    } 
      cat(" attempt", f ) #print how many times N had to be generated to get count data with correct 
correlation (created to keep simulation from stopping/crashing) 
      if (is.na(mean(y)) == FALSE){ 
        break #exit for loop with count data 
      } 
    } 
 
    # Bundle data 
    win.data <- list(y = y, S = nrow(y), V = ncol(y)) 
     
    # initial values 
    Nst <- apply(y, 1, max) + 1 # This line is vital 



    inits <- function() list(N = Nst) 
     
    # Define parameters to be monitored 
    params <- c("lambda", "p", "Ntotal", "N") 
     
    # MCMC settings 
    ni <- 30000 
    nt <- 1 
    nb <- 100 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "modelCC.txt", n.chains = nc, 
                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### Evaluate bias #### 
    #************************************** 
    ##Bias in N (site specific abundance) 
    bias.Nsite <- out$mean$N - N #calculates bias 
    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 
    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
    baye.pvalue.Nsite[k] <-mean(N > out$mean$N)  #Bayesian P-value (proportion of simulations where 
the true abundance was greater than the estimated abundance - values close to 0 or 1 indicate significant 
bias) 
     
    ##Bias in lambda (average local abundance) - descriptions same as above 
    bias.lam <- out$mean$lambda - lambda 
    m.bias.lam[k] <- mean(bias.lam) 
    sd.bias.lam[k] <- sd(bias.lam) 
    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 
     
    ##Bias in p - descriptions same as above 
    bias.p <- out$mean$p - prob 
    m.bias.p[k] <- mean(bias.p) 
    sd.bias.p[k] <- sd(bias.p) 
    baye.pvalue.p[k] <- mean(prob > out$mean$p) 
     
    ##Bias in Ntotal (total population size) - descriptions same as above 
    bias.Ntot <- out$mean$Ntotal - sum(N) 
    m.bias.Ntot[k] <- mean(bias.Ntot) 
    sd.bias.Ntot[k] <- sd(bias.Ntot) 
    baye.pvalue.Ntot[k] <- mean(sum(N) > out$mean$Ntotal) 
     
    ##Coefficient of Variation in Ntotal (total population size) - want to be under 15% 



    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 
    m.CV.Ntot[k] <- mean(CV.Ntot) 
    sd.CV.Ntot[k] <- sd(CV.Ntot) 
    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) 
    CV.lam <- out$sd$lambda/out$mean$lambda 
    m.CV.lam[k] <- mean(CV.lam) 
    sd.CV.lam[k] <- sd(CV.lam) 
    prop.CV.lam[k] <- mean(CV.lam < 0.15) 
     
    }  ) #This will be the end of the simulations 
     
  #******************** 
  # Summary of Results  
  #******************** 
  results <- c("lambda", "prob", "N.total", "N.site", "N.total.CV", "lambda.CV", "Prob.CV.Ntot", 
"Prob.CV.lambda") 
  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.p))), (mean(unlist(m.bias.Ntot))), 
(mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), (mean(unlist(m.CV.lam))), NA, NA),2) 
   
  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.p), 0.05)), 
(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), (quantile(unlist(m.CV.Ntot), 
0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 95% credible interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.p), 0.95)), 
(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), (quantile(unlist(m.CV.Ntot), 
0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 95% credible interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 
(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.p))), 
(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2) 
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a 
table of results 
  print(sim.results) 
 
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that six plots can be created in one image 
  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Nsite), xlim=c(-5,5), breaks=120, main="", ylab="N.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 
  (abline(v=0, col="red", lwd=3)) 



   
  (hist(unlist(m.bias.p), xlim=c(-0.5,0.5), main="", ylab="Detection prob.")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Ntot), xlim=c(-100,100), main="", ylab="Total N")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.Ntot), xlim=c(0,0.5), main="", ylab="CV Ntotal")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.lam), xlim=c(0,0.5), main="", ylab="CV lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = unlist(m.bias.lam), 
m.bias.p = unlist(m.bias.p), m.bias.Ntot = unlist(m.bias.Ntot), m.CV.Ntot = unlist(m.CV.Ntot), m.CV.lam 
= unlist(m.CV.lam), lambda = lambda, prob = prob, S = S, V = V, num.sim = num.sim)) 
} 
  



S3. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for point counts analyzed using hierarchical distance sampling 
where local abundance and probability of detection (sigma) were kept constant. 

# Function for simulating and analyzing data using a hierarchical distance sampling model for point 
counts where both abundance and detection is kept constant.  
# Data is simulated over a square using average local abundance for the square (lambda) and then 
truncated into a circle with radius B with an average local abundance equal to the estimated average local 
abundance of a point count site from the 2020 & 2021 data 
 
# Code adapted from: Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis 
of distribution, abundance, and species richness in R and BUGS. Academic Press, London, United 
Kingdom 
 
# nsites = number of sites 
# lambda = average local abundance per site over a square with area 2B x 2B where B = radius of circle 
# lambda1 = average local abundance per point count site (so average local abundance within a circle 
with a radius of B) 
# sigma = sigma for the half-normal detection function 
# num.sim = number of simulations 
 
# SET WORKING DIRECTORY 
Sim.HDS.point.fn <- function(nsites = nsites, lambda = lambda, sigma = sigma, num.sim = num.sim, 
lambda1 = lambda1) { 
  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 
   
  #*************** 
  # Define Bayesian Model  
  #*************** 
   
  # Specify model in Bugs language, but going to use JagsUI/jags 
  sink("simHDSpointfunction.txt") 
  cat(" 
 model{ 
  # Priors 
  sigma ~ dunif(0,100) #vague prior for sigma 
  lambda ~ dgamma(0.001, 0.001) #standard vague prior for lambda 
  for(i in 1:nind){ 
    dclass[i] ~ dcat(fc[site[i],]) # Part 1 of HM - model for distance class of the observed individuals 
  } 
  for(s in 1:nsites){ 
    # Construct cell probabilities for nD distance bands 
    for(g in 1:nD){                # midpt = mid-point of each band 
      log(p[s,g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma) # half-normal detection function 
      pi[s,g] <- ((2 * midpt[g] ) / (B * B)) * delta # prob. per interval 
      f[s,g] <- p[s,g] * pi[s,g] 
      fc[s,g] <- f[s,g] / pcap[s] 
    } 
    pcap[s] <- sum(f[s,])           # Pr(capture): sum of rectangular areas 
    ncap[s] ~ dbin(pcap[s], N[s])   # Part 2 of HM - describes imperfect detection leading to count n[s] 
    N[s] ~ dpois(lambda)         # Part 3 of HM - describes spatial variation in local abundance N[s] 



  } 
  # Derived parameters 
  Ntotal <- sum(N[]) #total of abundance at each site (N) 
  area <- nsites*3.141*B*B/1000000 #area in meters of the point count area 
  D <- Ntotal/area #calculates density 
} 
    ",fill = TRUE) 
  sink() 
   
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
   
  num.sim <- num.sim 
   
  # Create empty vectors to store results from replicated datasets 
  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 
  sd.bias.Nsite <- vector("list",num.sim) 
  baye.pvalue.Nsite <- vector("list",num.sim)  
  m.Ntrue <- vector("list",num.sim)  
  m.N <- vector("list",num.sim)  
   
  m.bias.sigma <- vector("list",num.sim) #bias in sigma 
  sd.bias.sigma <- vector("list",num.sim) 
  baye.pvalue.sigma <- vector("list",num.sim) 
  m.sig <- vector("list", num.sim) 
   
  m.bias.Ntot <- vector("list",num.sim) #bias in total N 
  sd.bias.Ntot <- vector("list",num.sim) 
  baye.pvalue.Ntot <- vector("list",num.sim) 
  m.bias.Ntot <- vector("list", num.sim) 
  m.Ntot.true <- vector("list", num.sim) 
  m.Ntot <- vector("list", num.sim) 
   
  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at point count site) 
  sd.bias.lam <- vector("list",num.sim) 
  baye.pvalue.lam <- vector("list",num.sim) 
  m.lambda <- vector("list", num.sim) 
   
  m.bias.den <- vector("list", num.sim) # bias in density 
  sd.bias.den <- vector("list", num.sim) 
  baye.pvalue.den <- vector("list", num.sim) 
  m.density <- vector("list", num.sim) 
  m.density.true <- vector("list", num.sim) 
   
  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at site) 
  sd.CV.lam <- vector("list",num.sim) 
  prop.CV.lam <- vector("list", num.sim) 
   
  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 
  sd.CV.Ntot <- vector("list",num.sim) 



  prop.CV.Ntot <- vector("list", num.sim) 
   
  #******************** 
  # Start Simulation 
  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    # ************** 
    # Simulate Data 
    # ************** 
    # Simulate abundance model (Poisson GLM for N) 
    N <- rpois(nsites, lambda)     # site specific abundance for square 
    N.true <- N                    # for point, those individuals located inside circle (radius = B) 
    B <- 100 #radius for circle (meters) 
    area <- nsites*3.141*B*B/1000000 #area for circle (meters squared) 
    den.true <- sum(N.true)/area #density for point count circle 
     
    # Simulate observation model - set up empty dataframe 
    data <- NULL 
     
    for(i in 1:nsites){ 
      if(N[i]==0){ #if abundance at a site is 0 
        data <- rbind(data, c(i,NA,NA,NA,NA)) # save site, y=1, u, v, d 
        next 
      } 
       
      # Simulation data on a square 
      u <- runif(N[i], 0, 2*B)   #x coordinate for distance from middle of square/circle 
      v <- runif(N[i], 0, 2*B)   #y coordinate for distance from middle of square/circle 
      d <- sqrt((u-B)^2 + (v-B)^2)  #distance 
      N.true[i] <- sum(d<= B)    # Population size inside of count circle 
       
      # Can only count individuals in the circle, so set to zero probability of individuals in the corners 
      p <- exp(-d *d / (2 * (sigma^2)))  # Detection probability - half normal detection function 
      pp <- ifelse(d <= B, 1, 0) * p    # Inside or outside circle (times "inside" or "outside") 
      y <- rbinom(N[i], 1, pp)  # Detection/non-detection of each individual 
       
      # Subset to "captured" individuals only 
      u <- u[y==1] 
      v <- v[y==1] 
      d <- d[y==1] 
      y <- y[y==1] 
       
      # Compile things into a matrix and insert NA if no individuals were captured at site i. Coordinates 
(u,v) are not used here. 
      if(sum(y) > 0) 
        data <- rbind(data, cbind(rep(i, sum(y)), y, u, v, d)) 
      else 
        data <- rbind(data, c(i,NA,NA,NA,NA)) # make a row of missing data 



    } 
    colnames(data) <- c("site", "y", "u", "v", "d") # name 1st column "site" 
     
    # ************************* 
    # Prep Data for analysis 
    # ************************* 
    ncap <- table(data[,1])            # ncap = 1 if no individuals captured 
    sites0 <- data[is.na(data[,2]),][,1] # sites where nothing was seen 
    ncap[as.character(sites0)] <- 0    # Fill in 0 for sites with no detections 
    ncap <- as.vector(ncap)            # Number of individuals detected per site 
    site <- data[!is.na(data[,2]),1]   # Site ID of each observation 
    delta <- 25                       # Distance bin width for rectangular approximation 
    midpt <- seq(delta/2, B, delta)    # Make mid-points and chop up data 
    dclass <- data[,5] %/% delta + 1   # Convert distance to distance category 
    nD <- length(midpt)                # Number of distance intervals 
    dclass <- dclass[!is.na(data[,2])] # Observed categorical observations 
    nind <- length(dclass)             # Total number of individuals detected 
     
    # Bundle data 
    win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt, delta=delta, ncap=ncap, 
dclass=dclass, site=site) 
     
    # initial values 
    Nst <- ncap + 1 # This line is vital 
    inits <- function() list(N = Nst, sigma = runif(1,30,60)) 
     
    # Define parameters to be monitored 
    params <- c("lambda", "sigma", "Ntotal", "D", "N") 
     
    # MCMC settings 
    ni <- 5000 
    nt <- 1 
    nb <- 1000 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "simHDSpointfunction.txt", n.chains = nc, 
                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### Evaluate bias #### 
    #************************************** 
    #Bias in N (site specific abundance) 
    bias.Nsite <- out$mean$N - N.true #calculates bias 
    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 



    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
    baye.pvalue.Nsite[k] <-mean(N.true > out$mean$N)  #Bayesian P-value (proportion of simulations 
where the true abundance was greater than the estimated abundance - values close to 0 or 1 indicate 
significant bias) 
     
    #Bias in lambda (average local abundance) - descriptions same as above 
    bias.lam <- out$mean$lambda - lambda1 #calculates bias (estimated lambda for circle - true lambda 
per circle(lambda1)) 
    m.bias.lam[k] <- mean(bias.lam) 
    sd.bias.lam[k] <- sd(bias.lam) 
    baye.pvalue.lam[k] <- mean(lambda1 > out$mean$lambda) 
    m.lambda[k] <- out$mean$lambda 
     
    #Bias in sigma - descriptions same as above 
    bias.sigma <- out$mean$sigma - sigma 
    m.bias.sigma[k] <- mean(bias.sigma) 
    sd.bias.sigma[k] <- sd(bias.sigma) 
    baye.pvalue.sigma[k] <- mean(sigma > out$mean$sigma) 
    m.sig[k] <- out$mean$sigma 
     
    #Bias in Ntotal (total population size)  - descriptions same as above 
    bias.Ntot <- out$mean$Ntotal - sum(N.true) 
    m.bias.Ntot[k] <- mean(bias.Ntot) 
    sd.bias.Ntot[k] <- sd(bias.Ntot) 
    baye.pvalue.Ntot[k] <- mean(sum(N.true) > out$mean$Ntotal) 
    m.Ntot.true[k] <- sum(N.true) 
    m.Ntot[k] <- out$mean$Ntotal 
     
    # Bias in density - descriptions same as above 
    bias.den <- out$mean$D - den.true 
    m.bias.den[k] <- mean(bias.den) 
    sd.bias.den[k] <- sd(bias.den) 
    baye.pvalue.den[k] <- mean(den.true > out$mean$D) 
    m.density.true[k] <- mean(den.true) 
    m.density[k] <- out$mean$D 
     
    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 
    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 
    m.CV.Ntot[k] <- mean(CV.Ntot) 
    sd.CV.Ntot[k] <- sd(CV.Ntot) 
    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) #percent with CV < 0.15 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) 
    CV.lam <- out$sd$lambda/out$mean$lambda 
    m.CV.lam[k] <- mean(CV.lam) 
    sd.CV.lam[k] <- sd(CV.lam) 
    prop.CV.lam[k] <- mean(CV.lam < 0.15) 
     
  }  ) #This will be the end of the simulations 
   
  #******************** 



  # Summary of Results  
  #******************** 
  results <- c("lambda", "sigma", "N.total", "N.site", "N.total.CV", "lambda.CV", "Prob.CV.Ntot", 
"Prob.CV.lambda") 
  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.sigma))), 
(mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), 
(mean(unlist(m.CV.lam))), NA, NA),2) 
   
  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.sigma), 0.05)), 
(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), (quantile(unlist(m.CV.Ntot), 
0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 95% credible interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.sigma), 0.95)), 
(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), (quantile(unlist(m.CV.Ntot), 
0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 95% credible interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 
(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.sigma))), 
(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2) 
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a 
table of results 
  print(sim.results) 
   
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that six plots can be created in one image 
  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Nsite), xlim=c(-1,1), main="", ylab="N.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.sigma), xlim=c(-10,10), main="", ylab="Sigma")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Ntot), xlim=c(-200,200), main="", ylab="Total N")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.Ntot), xlim=c(0,1), main="", ylab="CV Ntotal")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.lam), xlim=c(0,1), main="", ylab="CV lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   



  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = unlist(m.bias.lam), 
m.bias.sigma = unlist(m.bias.sigma), m.bias.Ntot = unlist(m.bias.Ntot), m.CV.Ntot = unlist(m.CV.Ntot), 
m.CV.lam = unlist(m.CV.lam), lambda = lambda, sigma = sigma, nsites = nsites, num.sim = num.sim, 
density.true = unlist(m.density.true), m.density = unlist(m.density), Ntot.true = unlist(m.Ntot.true), 
m.Ntot = unlist(m.Ntot), m.sigma = unlist(m.sig), m.lambda = unlist(m.lambda), out = out)) 
} 

 

 



S4. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for line transects analyzed using hierarchical distance sampling 
where local abundance and probability of detection (sigma) were kept constant.  

# Function for simulating and analyzing data using a hierarchical distance sampling model for line 
transects where both abundance and sigma (detection) are kept constant. 
 
# Code adapted from: Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis 
of distribution, abundance, and species richness in R and BUGS. Academic Press, London, United 
Kingdom 
 
# nsites = number of sites 
# lambda = average local abundance per transect 
# sigma = sigma for the half-normal detection function 
# num.sim = number of simulations 
# L = transect length 
 
Sim.HDS.line.fn <- function(nsites = nsites, lambda = lambda, sigma = sigma, num.sim = num.sim, L = 
L) { 
  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 
   
  #*************** 
  # Define Bayesian Model  
  #*************** 
   
  # Specify model in Bugs language, but going to use JagsUI/jags 
  sink("simHDSlinefunction.txt") 
  cat(" 
 model{ 
  # Priors 
  sigma ~ dunif(0,100) #vague prior for sigma 
  lambda ~ dgamma(0.001, 0.001) # vague prior for lambda 
  for(i in 1:nind){ 
   dclass[i] ~ dcat(fc[site[i],]) # Part 1 of HM - model for distance class of the observed individuals 
} 
  for(s in 1:nsites){ 
    # Construct cell probabilities for nD distance bands 
    for(g in 1:nD){                # midpt = mid-point of each band 
      log(p[s,g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma) # half-normal detection function 
      pi[s,g] <- delta/B # prob. per interval 
      f[s,g] <- p[s,g] * pi[s,g] 
      fc[s,g] <- f[s,g] / pcap[s] 
    } 
    pcap[s] <- sum(f[s,])           # Pr(capture): sum of rectangular areas 
    ncap[s] ~ dbin(pcap[s], N[s])   # Part 2 of HM - describes imperfect detection leading to count n[s] 
    N[s] ~ dpois(lambda)         # Part 3 of HM - describes spatial variation in local abundance N[s] 
  } 
  # Derived parameters 
  Ntotal <- sum(N[]) #total of abundance at each site (N) 
  area <- nsites*L*2*B/1000000 #area of transects 
  D <- Ntotal/area #density 



} 
    ",fill = TRUE) 
  sink() 
   
   
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
   
  num.sim <- num.sim 
   
  # Create empty vectors to store results from replicated datasets 
  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 
  sd.bias.Nsite <- vector("list",num.sim) 
  baye.pvalue.Nsite <- vector("list",num.sim)  
  m.Ntrue <- vector("list",num.sim)  
  m.N <- vector("list",num.sim)  
   
  m.bias.sigma <- vector("list",num.sim) #bias in sigma 
  sd.bias.sigma <- vector("list",num.sim) 
  baye.pvalue.sigma <- vector("list",num.sim) 
  m.sig <- vector("list", num.sim) 
   
  m.bias.Ntot <- vector("list",num.sim) #bias in total N 
  sd.bias.Ntot <- vector("list",num.sim) 
  baye.pvalue.Ntot <- vector("list",num.sim) 
  m.bias.Ntot <- vector("list", num.sim) 
  m.Ntot.true <- vector("list", num.sim) 
  m.Ntot <- vector("list", num.sim) 
   
  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 
  sd.bias.lam <- vector("list",num.sim) 
  baye.pvalue.lam <- vector("list",num.sim) 
  m.lambda <- vector("list", num.sim) 
   
  m.bias.den <- vector("list", num.sim) #bias in density 
  sd.bias.den <- vector("list", num.sim) 
  baye.pvalue.den <- vector("list", num.sim) 
  m.density <- vector("list", num.sim) 
  m.density.true <- vector("list", num.sim) 
   
  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at site) 
  sd.CV.lam <- vector("list",num.sim) 
  prop.CV.lam <- vector("list", num.sim) 
   
  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 
  sd.CV.Ntot <- vector("list",num.sim) 
  prop.CV.Ntot <- vector("list", num.sim) 
   
  #******************** 
  # Start Simulation 



  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    # ************** 
    # Simulate Data 
    # ************** 
    # Simulate abundance model (Poisson GLM for N) 
    N <- rpois(nsites, lambda)                  # site-specific abundances 
    N.true <- N #true abundance at each site, for a transect this is the same as N (differs for point counts) 
    B <- 100 #strip half-width 
    L <- L #length of transect 
    area <- nsites*L*2*B/1000000 #area meters squared 
    den.true <- sum(N)/area # true density  
     
    # Simulate observation model - set up empty dataframe 
    data <- NULL 
     
    for(i in 1:nsites){ 
      if(N[i]==0){ #if abundance at a site is 0 
        data <- rbind(data, c(i,NA,NA,NA,NA)) # save site, y=1, u, v, d 
        next 
      } 
      # Simulation of distances, uniformly, for each individual in population 
      # note it piles up all N[i] guys on one side of the transect 
      d <- runif(N[i], 0, B) 
      p <- exp(-d *d / (2 * (sigma^2))) # half-normal detection function 
      # Determine if individuals are captured or not 
      y <- rbinom(N[i], 1, p) 
      u <- v <- rep(NA, N[i])   # coordinates (u,v) 
      # Subset to "captured" individuals only 
      d <- d[y==1] 
      u <- u[y==1] 
      v <- v[y==1] 
      y <- y[y==1] 
       
       
      # Compile things into a matrix and insert NA if no individuals were 
      # captured at site i. Coordinates (u,v) are not used here. 
      if(sum(y) > 0) 
        data <- rbind(data, cbind(rep(i, sum(y)), y, u, v, d)) 
      else 
        data <- rbind(data, c(i,NA,NA,NA,NA)) # make a row of missing data 
    } 
    colnames(data) <- c("site", "y", "u", "v", "d") # name 1st col "site" 
     
    # ************************* 
    # Prep Data for analysis 
    # ************************* 
    ncap <- table(data[,1])            # ncap = 1 if no individuals captured 



    sites0 <- data[is.na(data[,2]),1] # sites where nothing was seen 
    ncap[as.character(sites0)] <- 0    # Fill in 0 for sites with no detections 
    ncap <- as.vector(ncap)            # Number of individuals detected per site 
    site <- data[!is.na(data[,2]),1]   # Site ID of each observation 
    delta <- 10                       # Distance bin width for rect. approx. 
    midpt <- seq(delta/2, B, delta)    # Make mid-points and chop up data 
    dclass <- data[,5] %/% delta + 1   # Convert distance to distance category 
    nD <- length(midpt)                # Number of distance intervals 
    dclass <- dclass[!is.na(data[,2])] # Observed categorical observations 
    nind <- length(dclass)             # Total number of individuals detected 
     
    # Bundle data 
    win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt, delta=delta, ncap=ncap, 
dclass=dclass, site=site, L=L) 
     
    # initial values 
    Nst <- ncap + 1 # This line is vital 
    inits <- function() list(N = Nst, sigma = runif(1,30,60)) 
     
    # Define parameters to be monitored 
    params <- c("lambda", "sigma", "Ntotal", "D", "N") 
     
    # MCMC settings 
    ni <- 5000 
    nt <- 1 
    nb <- 1000 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "simHDSlinefunction.txt", n.chains = nc, 
                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### EValuate bias #### 
    #************************************** 
    #Bias in N (site specific abundance) 
    bias.Nsite <- out$mean$N - N.true #calculates bias 
    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 
    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
    baye.pvalue.Nsite[k] <-mean(N.true > out$mean$N)  #Bayesian P-value (proportion of simulations 
where the true abundance was greater than the estimated abundance - values close to 0 or 1 indicate 
significant bias) 
     
    #Bias in lambda (average local abundance) - descriptions same as above 
    bias.lam <- out$mean$lambda - lambda 



    m.bias.lam[k] <- mean(bias.lam) 
    sd.bias.lam[k] <- sd(bias.lam) 
    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 
    m.lambda[k] <- out$mean$lambda 
     
    #Bias in sigma - descriptions same as above 
    bias.sigma <- out$mean$sigma - sigma 
    m.bias.sigma[k] <- mean(bias.sigma) 
    sd.bias.sigma[k] <- sd(bias.sigma) 
    baye.pvalue.sigma[k] <- mean(sigma > out$mean$sigma) 
    m.sig[k] <- out$mean$sigma 
     
    #Bias in Ntotal (total population size)  - descriptions same as above 
    bias.Ntot <- out$mean$Ntotal - sum(N.true) 
    m.bias.Ntot[k] <- mean(bias.Ntot) 
    sd.bias.Ntot[k] <- sd(bias.Ntot) 
    baye.pvalue.Ntot[k] <- mean(sum(N.true) > out$mean$Ntotal) 
    m.Ntot.true[k] <- sum(N.true) 
    m.Ntot[k] <- out$mean$Ntotal 
     
    #Bias in density - descriptions same as above 
    bias.den <- out$mean$D - den.true 
    m.bias.den[k] <- mean(bias.den) 
    sd.bias.den[k] <- sd(bias.den) 
    baye.pvalue.den[k] <- mean(den.true > out$mean$D) 
    m.density.true[k] <- mean(den.true) 
    m.density[k] <- out$mean$D 
     
    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 
    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 
    m.CV.Ntot[k] <- mean(CV.Ntot) 
    sd.CV.Ntot[k] <- sd(CV.Ntot) 
    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) 
    CV.lam <- out$sd$lambda/out$mean$lambda 
    m.CV.lam[k] <- mean(CV.lam) 
    sd.CV.lam[k] <- sd(CV.lam) 
    prop.CV.lam[k] <- mean(CV.lam < 0.15) 
     
  }  ) #This will be the end of the simulations 
   
  #******************** 
  # Summary of Results  
  #******************** 
  results <- c("lambda", "sigma", "N.total", "N.site", "N.total.CV", "lambda.CV", "Prob.CV.Ntot", 
"Prob.CV.lambda") 
  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.sigma))), 
(mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), 
(mean(unlist(m.CV.lam))), NA, NA),2) 
   



  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.sigma), 0.05)), 
(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), (quantile(unlist(m.CV.Ntot), 
0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 95% credible interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.sigma), 0.95)), 
(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), (quantile(unlist(m.CV.Ntot), 
0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 95% credible interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 
(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.sigma))), 
(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2)  
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a 
table of results 
  print(sim.results) 
   
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that six plots can be created in one image 
  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Nsite), xlim=c(-10,10), main="", ylab="N.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.sigma), xlim=c(-10,10), main="", ylab="Sigma")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Ntot), xlim=c(-200,200), main="", ylab="Total N")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.Ntot), xlim=c(0,1), main="", ylab="CV Ntotal")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.lam), xlim=c(0,1), main="", ylab="CV lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = unlist(m.bias.lam), 
m.bias.sigma = unlist(m.bias.sigma), m.bias.Ntot = unlist(m.bias.Ntot), m.CV.Ntot = unlist(m.CV.Ntot), 
m.CV.lam = unlist(m.CV.lam), lambda = lambda, sigma = sigma, nsites = nsites, num.sim = num.sim, 
density.true = unlist(m.density.true), m.density = unlist(m.density), Ntot.true = unlist(m.Ntot.true), 
m.Ntot = unlist(m.Ntot), m.sigma = unlist(m.sig), m.lambda = unlist(m.lambda), out = out)) 
} 
   



S5. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for point counts analyzed using hierarchical distance sampling 
with time removal where local abundance and probability of detection (sigma) were kept 
constant.  

# Function for simulating and analyzing data using a hierarchical distance sampling model and time 
removal for point counts where both abundance, detection, and availability is kept constant.  
# Data is simulated over a square using average local abundance for the square (lambda) and then 
truncated into a circle with radius B with an average local abundance equal to the estimated average local 
abundance of a point count site from the 2020 & 2021 data 
 
# Code adapted from:  
#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of distribution, 
abundance, and species richness in R and BUGS. Academic Press, London, United Kingdom. 
#Amundson, C. L., J. A. Royle, C. M. Handel. 2014. A hierarchical model combining distance sampling 
and time removal to estimate detection probability during avian point counts. The Auk 131(4): 476-494. 
#Hostetter, N. J., B. Gardner, T. S. Sillett, K. H. Pollock, T. R. Simmons. 2019. An integrated model 
decomposing the components of detection probability and abundance in unmarked populations. 
Ecosphere 10(3) 
 
# nsites = number of sites 
# lambda = average local abundance per site over a square with area 2B x 2B where B = radius of circle 
# lambda1 = average local abundance per point count site (so average local abundance within a circle 
with a radius of B) 
# sigma = sigma for the half-normal detection function 
# num.sim = number of simulations 
# p.avail = overall availability probability 
# int.avail = time interval-specific availability probability 
 
Sim.HDS.TR.function <- function(nsites = nsites, lambda = lambda, sigma = sigma, num.sim = num.sim, 
lambda1 = lambda1, p.avail = p.avail) { 
  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 
   
  #*************** 
  # Define Model  
  #*************** 
   
  # Specify model in Bugs language, but going to use JagsUI/jags 
  sink("simHDS_TR.txt") 
  cat(" 
model { 
  # Prior distributions for basic parameters 
 
  p.a ~ dunif(0,1) # vague prior for availability (during a) 
  sigma ~ dunif(0,100) # vague prior for sigma 
  lambda ~ dgamma(0.001, 0.001) # vague prior for abundance 
   
for(s in 1:nsites){ 
 
    # Distance sampling detection probability model 
    for(b in 1:nD){ 



      log(g[b,s]) <- -mdpts[b] * mdpts[b] / (2*sigma*sigma)  # Half-normal 
      f[b,s] <- (2 * mdpts[b] * delta ) / (B*B) # Radial density function 
      pi.pd[b,s] <- g[b,s]*f[b,s]  #  Product Pr(detect)*Pr(distribution) 
      pi.pd.c[b,s] <- pi.pd[b,s]/pdet[s]  # Conditional probabilities 
    } 
    
    pdet[s] <- sum(pi.pd[,s])  # Probability of detection at all 
     
    # Time-removal probabilities 
    for (k in 1:K){ 
      pi.pa[k,s] <- p.a * pow(1-p.a, (k-1)) 
      pi.pa.c[k,s] <- pi.pa[k,s]/phi[s] # Conditional probabilities of availability 
    } 
     
    phi[s] <- sum(pi.pa[,s]) # Probability of ever available 
   
  } 
  # Conditional observation model for categorical covariates 
  for(i in 1:nobs){ 
    dclass[i] ~ dcat(pi.pd.c[,site[i]]) 
    tint[i] ~ dcat(pi.pa.c[,site[i]]) 
  } 
  # Abundance model 
  for(s in 1:nsites){ 
     
    n[s] ~ dbin(pdet[s], N[s])    # counts related to probability of detection given availability 
    N[s] ~ dbin(phi[s],M[s])      # Number of available individuals 
    M[s] ~ dpois(lambda)       # Abundance per survey/site/point 
     
  } 
 
  # Derived quantities 
  Mtot <- sum(M[])  # Total population size 
  Ntot <- sum(N[])  # Total available population size 
  PDETmean <- mean(pdet[]) # Mean perceptibility across sites 
  PHImean <- mean(phi[]) # Mean availability across sites 
} 
    ",fill = TRUE) 
  sink() 
   
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
   
  num.sim <- num.sim 
   
  # Create empty vectors to store results from replicated datasets 
  m.bias.Msite <- vector("list",num.sim)  #examine bias in abundance (M) at each site 
  sd.bias.Msite <- vector("list",num.sim) 
  baye.pvalue.Msite <- vector("list",num.sim)  
  m.Mtrue <- vector("list",num.sim)  



  m.M <- vector("list",num.sim)  
   
  m.bias.sigma <- vector("list",num.sim) #bias in probablity of detection 
  sd.bias.sigma <- vector("list",num.sim) 
  baye.pvalue.sigma <- vector("list",num.sim) 
  m.sig <- vector("list", num.sim) 
   
  m.bias.PHImean <- vector("list",num.sim) #bias in probablity of availability 
  sd.bias.PHImean <- vector("list",num.sim) 
  baye.pvalue.PHImean <- vector("list",num.sim) 
  m.PHImean <- vector("list", num.sim) 
   
  m.bias.Mtot <- vector("list",num.sim) #bias in total M 
  sd.bias.Mtot <- vector("list",num.sim) 
  baye.pvalue.Mtot <- vector("list",num.sim) 
  m.bias.Mtot <- vector("list", num.sim) 
  m.Mtot.true <- vector("list", num.sim) 
  m.Mtot <- vector("list", num.sim) 
   
  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 
  sd.bias.lam <- vector("list",num.sim) 
  baye.pvalue.lam <- vector("list",num.sim) 
  m.lambda <- vector("list", num.sim) 
   
  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at site) 
  sd.CV.lam <- vector("list",num.sim) 
  prop.CV.lam <- vector("list", num.sim) 
   
  m.CV.Mtot <- vector("list",num.sim) #coefficient of variation for total N 
  sd.CV.Mtot <- vector("list",num.sim) 
  prop.CV.Mtot <- vector("list", num.sim) 
   
  #******************** 
  # Start Simulation 
  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    # ************** 
    # Simulate Data 
    # ************** 
    # Simulate superpopulation abundance model for groups (Poisson GLM for M) 
    M <- rpois(nsites, lambda)            # site-specific abundance for square 
    M.true <- M                           # for point: inside of circle (radius = B) 
    B <- 100 #radius for circle (meters) 
    K <- 4 #number of time intervals 
 
     
    # Simulate observation model - set up empty dataframe 
    data <- NULL 



    for(i in 1:nsites){ 
      if(M[i]==0){ #if abundance at a site is 0 
        data <- rbind(data,c(i,NA,NA,NA,NA,NA)) # save site, y=1, u, v, d, tint 
        next 
      } 
       
      # Simulation data on a square 
      u <- runif(M[i], 0, 2*B)   #x  
      v <- runif(M[i], 0, 2*B)   #y  
      d <- sqrt((u-B)^2 + (v-B)^2)  #distance 
      M.true[i] <- sum(d<= B)    # Population size inside of count circle 
       
      # Can only count individuals in the circle, so set to zero probability of individuals in the corners 
      p <- ifelse(d <= B, 1, 0) * exp(-d *d / (2 * (sigma^2))) #half-normal detection function  
       
      # Time-removal 
      int.avail <- 1 - (1-p.avail)^(1/K) #calculate time-interval specific availability probability 
      rem.probs <- c(int.avail, ((1-int.avail)^(1:(K-1)))*int.avail) #calculate probability for each time 
interval 
      mn.probs <- c(rem.probs, 1-sum(rem.probs)) #probability for each time interval + probability not ever 
available 
      aux <- sample(1:(K+1), M[i], replace=TRUE, prob=mn.probs) 
      aux[aux==(K+1)] <- 0 #if not capture during intervals 1-K, set to 0 
       
      newp <-  p * as.numeric(aux!=0) #combine probability of detection with availability 
      navail <- sum(aux!=0) 
       
      if(navail==0){ 
        data <- rbind(data,c(i,NA,NA,NA,NA,NA)) # save site, y=1, u, v, d 
        next 
      } 
       
      # generate count of birds based on combined probability of detection 
      y <- rbinom(M[i], 1, newp) 
      # Subset to "captured" individuals only 
      u <- u[y==1] 
      v <- v[y==1]  
      d <- d[y==1]   
      aux <- aux[y==1]   
      y <- y[ y==1] 
       
      # Now compile things into a matrix and insert NA if no individuals were 
      # captured at site i. Coordinates (u,v) are not used here. 
      if(sum(y)>0){ 
        data <- rbind(data, cbind(rep(i, sum(y)), y, u, v, d, aux)) 
      } else { 
        data <- rbind(data, c(i,NA,NA,NA,NA,NA)) # make a row of missing data 
      } 
    } # end of for loop 
    colnames(data)[1] <- "site" 
     



    # ************************* 
    # Prep Data for analysis 
    # ************************* 
    # Create the observed encounter frequencies per site (include the zeros! ) 
    data <- data[!is.na(data[,2]),]   # Sites where detections did occur 
    n <- rep(0,nsites)                # The full site vector 
    names(n) <- 1:nsites 
    n[names(table(data[,1]))] <- table(data[,1])  # Put in the counts 
    site <- data[,1] 
    nobs <- nrow(data) 
     
    # Create the distance class data 
    nD <- 10             # Number of distance classes 
    delta <- B/nD        # bin size or width 
    mdpts <- seq(delta/2,B,delta) # midpoint distance of bins up to max distance 
    dclass <- data[,"d"] # distance class for each observation 
    dclass <- dclass%/%delta  +1 
    tint <- data[,"aux"] 
     
    # Bundle data and summarize 
    win.data<-list(n=n, site=site, dclass=as.numeric(dclass),nsites=nsites, 
                        nobs=nobs, delta=delta, nD=nD,mdpts=mdpts,B=B, K=K, tint=tint) 
     
    Mst <- Nst <- n + 1 
    inits <- function(){list(M=Mst, N=Nst)} 
    params <- c("PDETmean", "PHImean", "Mtot", "Ntot", "p.a", "sigma", "lambda", "N", "M") 
     
    # MCMC settings 
    ni <- 20000 
    nt <- 1 
    nb <- 1000 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "simHDS_TR.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = 
nb, parallel = TRUE) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### Evaluate bias #### 
    #************************************** 
    ##Bias in N (site specific abundance) 
    bias.Msite <- out$mean$M - M.true #calculates bias 
    m.bias.Msite[k] <- mean(bias.Msite) #averages bias and places within vector 
    sd.bias.Msite[k] <- sd(bias.Msite) #gets standard deviation of bias places within vector 



    baye.pvalue.Msite[k] <-mean(M.true > out$mean$M)  #Bayesian P-value (proportion of simulations 
where the true abundance was greater than the estimated abundance - values close to 0 or 1 indicate 
significant bias) 
     
    ##Bias in lambda (average local abundance) - descriptions same as above 
    bias.lam <- out$mean$lambda - lambda1 #calculates bias (estimated lambda for circle - true lambda 
per circle(lambda1)) 
    m.bias.lam[k] <- mean(bias.lam) 
    sd.bias.lam[k] <- sd(bias.lam) 
    baye.pvalue.lam[k] <- mean(lambda1 > out$mean$lambda) 
    m.lambda[k] <- out$mean$lambda 
     
    ##Bias in sigma - descriptions same as above 
    bias.sigma <- out$mean$sigma - sigma 
    m.bias.sigma[k] <- mean(bias.sigma) 
    sd.bias.sigma[k] <- sd(bias.sigma) 
    baye.pvalue.sigma[k] <- mean(sigma > out$mean$sigma) 
    m.sig[k] <- out$mean$sigma 
     
    ##Bias in availability - descriptions same as above 
    bias.PHImean <- out$mean$PHImean - p.avail 
    m.bias.PHImean[k] <- mean(bias.PHImean) 
    sd.bias.PHImean[k] <- sd(bias.PHImean) 
    baye.pvalue.PHImean[k] <- mean(p.avail > out$mean$PHImean) 
    m.PHImean[k] <- out$mean$PHImean 
     
    ##Bias in Mtotal (total population size)  - descriptions same as above 
    bias.Mtot <- out$mean$Mtot - sum(M.true) 
    m.bias.Mtot[k] <- mean(bias.Mtot) 
    sd.bias.Mtot[k] <- sd(bias.Mtot) 
    baye.pvalue.Mtot[k] <- mean(sum(M.true) > out$mean$Mtot) 
    m.Mtot.true[k] <- sum(M.true) 
    m.Mtot[k] <- out$mean$Mtot 
 
    ##Coefficient of Variation in Mtotal (total population size) - want to be under 15% 
    CV.Mtot <- out$sd$Mtot/out$mean$Mtot #standard deviation divided by mean 
    m.CV.Mtot[k] <- mean(CV.Mtot) 
    sd.CV.Mtot[k] <- sd(CV.Mtot) 
    prop.CV.Mtot[k] <- mean(CV.Mtot < 0.15) 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) 
    CV.lam <- out$sd$lambda/out$mean$lambda 
    m.CV.lam[k] <- mean(CV.lam) 
    sd.CV.lam[k] <- sd(CV.lam) 
    prop.CV.lam[k] <- mean(CV.lam < 0.15) 
     
  }  ) #This will be the end of the simulations 
   
  #******************** 
  # Summary of Results  
  #******************** 



  results <- c("lambda", "sigma", "PHImean", "M.total", "M.site", "N.total.CV", "lambda.CV", 
"Prob.CV.Ntot", "Prob.CV.lambda") 
  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.sigma))), 
(mean(unlist(m.bias.PHImean))), (mean(unlist(m.bias.Mtot))), (mean(unlist(m.bias.Msite))), 
(mean(unlist(m.CV.Mtot))), (mean(unlist(m.CV.lam))), NA, NA),2) 
   
  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.sigma), 0.05)), 
(quantile(unlist(m.bias.PHImean), 0.05)), (quantile(unlist(m.bias.Mtot), 0.05)), 
(quantile(unlist(m.bias.Msite), 0.05)), (quantile(unlist(m.CV.Mtot), 0.05)), (quantile(unlist(m.CV.lam), 
0.05)), NA, NA),2) #lower 95% credible interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.sigma), 0.95)), 
(quantile(unlist(m.bias.PHImean), 0.95)), (quantile(unlist(m.bias.Mtot), 0.95)), 
(quantile(unlist(m.bias.Msite), 0.95)), (quantile(unlist(m.CV.Mtot), 0.95)), (quantile(unlist(m.CV.lam), 
0.95)), NA, NA),2) #upper 95% credible interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Mtot) > 0.15)), 
(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.sigma))), 
(mean(unlist(baye.pvalue.PHImean))), (mean(unlist(baye.pvalue.Mtot))), 
(mean(unlist(baye.pvalue.Msite))), NA, NA, NA, NA),2) 
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a 
table of results 
  print(sim.results) 
   
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that seven plots can be created in one image 
  par(mfrow = c(7,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Msite), xlim=c(-10,10), main="", ylab="M.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.sigma), xlim=c(-10,10), main="", ylab="Sigma")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.PHImean), xlim=c(-10,10), main="", ylab="PHI mean")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Mtot), xlim=c(-200,200), main="", ylab="Total M")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.Mtot), xlim=c(0,1), main="", ylab="CV Mtotal")) 
  (abline(v=0.15, col="red", lwd=3)) 



   
  (hist(unlist(m.CV.lam), xlim=c(0,1), main="", ylab="CV lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  return(list(sim.results=sim.results, m.bias.Msite=unlist(m.bias.Msite), m.bias.lam = unlist(m.bias.lam), 
m.bias.sigma = unlist(m.bias.sigma), m.bias.PHImean = unlist(m.bias.PHImean), m.bias.Mtot = 
unlist(m.bias.Mtot), m.CV.Mtot = unlist(m.CV.Mtot), m.CV.lam = unlist(m.CV.lam), lambda = lambda, 
sigma = sigma, p.avail= p.avail, nsites = nsites, num.sim = num.sim, Mtot.true = unlist(m.Mtot.true), 
m.Mtot = unlist(m.Mtot), m.sigma = unlist(m.sig), m.PHImean = unlist(m.PHImean), m.lambda = 
unlist(m.lambda), out = out)) 
} 
 

  



S6. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for point counts analyzed using naïve models where local 
abundance and probability of detection were kept constant.  

# Function for simulating and analyzing data using a naive model where average local abundance is 
estimated without take probability of detection into account for point counts. Local abundance is kept 
similar across all sites and probability of detection is kept constant. 
 
# S = number of spatial reps/ number of sites 
# V = number of visits at each site (temporal reps) - which was 1 for these simulations 
# lambda = average local abundance  
# prob = probability of detection 
# num.sim = number of simulations 
 
#Simulate Data - Nmixture model. Parameters estimated: lambda and probability of detection 
Sim.Naive.fn <- function(S=S, V=V, lambda = lambda, prob = prob, num.sim = num.sim) { 
  library(jagsUI) 
   
  #*************** 
  # Define Model  
  #*************** 
   
  # Specify model in Bugs language, but going to use JagsUI/jags 
  sink("Naive.txt") 
  cat(" 
    model { 
     
    # Priors 
       lambda ~ dgamma(0.005, 0.005)      # Standard vague prior for lambda 
     
    # Likelihood 
       # Biological model for true abundance 
          for (i in 1:S) { 
            N[i] ~ dpois(lambda) 
         
         } # i 
    #Derived parameters 
        Ntotal <- sum(N[]) 
 
    } 
    ",fill = TRUE) 
  sink() 
   
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
   
  num.sim <- num.sim 
   
  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 
  sd.bias.Nsite <- vector("list",num.sim) 



  baye.pvalue.Nsite <- vector("list",num.sim)  
   
  m.bias.Ntot <- vector("list",num.sim) #bias in total N 
  sd.bias.Ntot <- vector("list",num.sim) 
  baye.pvalue.Ntot <- vector("list",num.sim) 
   
  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 
  sd.bias.lam <- vector("list",num.sim) 
  baye.pvalue.lam <- vector("list",num.sim) 
   
   
  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at site) 
  sd.CV.lam <- vector("list",num.sim) 
  prop.CV.lam <- vector("list", num.sim) 
   
  #******************** 
  # Start Simulation 
  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    #Simulate data 
    S = S  # spatial reps 
    V = V  # temporal reps 
    lambda = lambda # mean abundance at site 
    prob = prob # probability of detection 
     
    # Create structure to contain counts 
    y <- array(dim = c(S,V)) 
     
    # sample abundance from a Poisson distribution 
    N <- rpois(n=S, lambda=lambda) 
     
    # sample counts from a Binomial distribution (N, prob) 
    for (j in 1:V){ 
      y[,j] <- rbinom(n = S, size = N, prob = prob) 
    } 
     
    Count.data <- apply(y,1,max) #max count if more than 1 visit, if 1 visit then counts for that visit 
     
    win.data <- list(N = Count.data, S = nrow(y)) 
     
    # initial values 
    inits <- function() list(lambda = 1) 
     
    # Define parameters to be monitored 
    params <- c("lambda", "Ntotal", "N") 
     
    # MCMC settings 
    ni <- 3000 



    nt <- 1 
    nb <- 100 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "Naive.txt", n.chains = nc, 
                n.thin = nt, n.iter = ni, n.burnin = nb) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### Evaluate bias #### 
    #************************************** 
    #Bias in N (site specific abundance) 
    bias.Nsite <- out$mean$N - N #calculates bias 
    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 
    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
    baye.pvalue.Nsite[k] <-mean(N > out$mean$N)  #Bayesian P-value (proportion of simulations where 
the true abundance was greater than the estimated abundance - values close to 0 or 1 indicate significant 
bias) 
     
    #Bias in lambda (average local abundance) - descriptions same as above 
    bias.lam <- out$mean$lambda - lambda 
    m.bias.lam[k] <- mean(bias.lam) 
    sd.bias.lam[k] <- sd(bias.lam) 
    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 
     
    #Bias in Ntotal (total population size)  - descriptions same as above 
    bias.Ntot <- out$mean$Ntotal - sum(N) 
    m.bias.Ntot[k] <- mean(bias.Ntot) 
    sd.bias.Ntot[k] <- sd(bias.Ntot) 
    baye.pvalue.Ntot[k] <- mean(sum(N) > out$mean$Ntotal) 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) 
    CV.lam <- out$sd$lambda/out$mean$lambda #standard deviation divided by mean 
    m.CV.lam[k] <- mean(CV.lam) 
    sd.CV.lam[k] <- sd(CV.lam) 
    prop.CV.lam[k] <- mean(CV.lam < 0.15) 
     
  }  ) #This will be the end of the simulations 
   
  #******************** 
  # Summary of Results  
  #******************** 
  results <- c("lambda", "N.total", "N.site", "lambda.CV", "Prob.CV.lambda") 
  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.Ntot))), 
(mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.lam))), NA),2) 



   
  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.Ntot), 0.05)), 
(quantile(unlist(m.bias.Nsite), 0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA),2) #upper 95% credible 
interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.Ntot), 0.95)), 
(quantile(unlist(m.bias.Nsite), 0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA),2) #lower 95% credible 
interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, (mean(unlist(m.CV.lam) > 0.15))) 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.Ntot))), 
(mean(unlist(baye.pvalue.Nsite))), NA, NA),2) 
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a 
table of results 
  print(sim.results) 
   
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that six plots can be created in one image, which is then saved in a  
  # word document Liz_Sim_Results_Figures 
  par(mfrow = c(4,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Nsite), xlim=c(-5,5), breaks=120, main="", ylab="N.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Ntot), xlim=c(-100,100), main="", ylab="Total N")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.lam), xlim=c(0,0.5), main="", ylab="CV lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = unlist(m.bias.lam), 
m.bias.Ntot = unlist(m.bias.Ntot), m.CV.lam = unlist(m.CV.lam), lambda = lambda, prob = prob, S = S, 
V = V, num.sim = num.sim)) 
} 
  

  



Table S7. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 
data analyzed using hierarchical distance sampling with time removal models. Mean (95% credible interval) for bias and coefficient of 
variation from 500 simulation runs for each suite of parameters. Different scenarios include combinations of high, average, and low 
abundance paired with either average or high detection. R = number of survey sites, λ = mean abundance per site, sigma = mean 
sigma, p.avail = mean probability of availability; CV = coefficient of variation for total population size (Total N) and N.site = 
estimated number of dusky grouse per survey site. 

 

* Table is printed here as an image in order to fit the page; a spreadsheet of this table is available in the provided supplemental 
materials 

  

R λ sigma p.avail

High abundance, average detection
200 0.31 43 0.65 0.32 (-0.15, 1.27) 11.04 (-7.40, 30.23) -0.03 (-0.27, 0.24) 64.52 (-29.02, 256.44) 0.32 (-0.15, 1.28) 1.38 (0.54, 2.59) 1.00 no
1000 0.31 43 0.65 0.17 (-0.10, 0.65) 2.26 (-4.49, 11.99) -0.04 (-0.29, 0.18) 175.90 (-99.60, 658.26) 0.18 (-0.10, 0.66) 0.62 (0.23, 1.40) 1.00 no
6000 0.31 43 0.65 0.01 (-0.06, 0.09) 0.44, (-2.33 3.35) -0.01 (-0.12, 0.09) 63.86 (-313.64, 563.16) 0.01 (-0.05, 0.09) 0.15 (0.10, 0.22) 0.33 no

High abundance, high detection
200 0.31 48 0.89 0.15 (-0.13, 0.55) 10.90 (-6.77, 26.49) -0.08 (-0.32, 0.07) 30.64 (-22.93, 115.62) 0.15 (-0.11, 0.58) 0.79 (0.29, 2.28) 1.00 no
1000 0.31 48 0.89 0.00 (-0.08, 0.09) 2.49 (-4.59, 12.39) -0.02 (-0.10, 0.05) 1.32 (-70.19, 86.43) 0.00 (-0.07, 0.09) 0.16 (0.14, 0.20) 0.78 no
1300 0.31 48 0.89 0.00 (-0.09, 0.07) 1.83 (-4.18, 10.15) -0.01 (-0.09, 0.04) 0.20 (-88.30, 82.51) 0.00 (-0.07, 0.06) 0.14 (0.12, 0.17) 0.18 no
1380 0.31 48 0.89 0.00 (-0.07, 0.07) 1.49 (-4.37, 9.16) -0.02 (-0.09, 0.04) 4.77 (-80.91, 95.09) 0.00 (-0.06, 0.07) 0.14 (0.12, 0.16) 0.11 yes-ish
1390 0.31 48 0.89 -0.01 (-0.07, 0.06) 1.88 (-4.21, 8.61) -0.01 (-0.08, 0.04) -5.11 (-92.07, 91.14) 0.00 (-0.07, 0.07) 0.13 (0.12, 0.15) 0.09 yes
1400 0.31 48 0.89 0.00 (-0.07, 0.08) 1.47 (-4.37, 8.64) -0.01 (-0.07, 0.04) 2.80 (-87.32, 106.15) 0.00 (-0.06, 0.08) 0.13 (0.12, 0.15) 0.06 yes
1500 0.31 48 0.89 0.00 (-0.07, 0.06) 1.31 (-4.08, 7.88) -0.01 (-0.09, 0.04) 0.52 (-87.88, 97.36) 0.00 (-0.06, 0.06) 0.13 (0.12, 0.15) 0.04 yes

CV Total N
Probability 

CV
N.total > 0.15

Protocol meets
 Management
 Requirements

Simulation Parameters
Bias in λ Bias in sigma p.avail Bias in Total N Bias in N.site



 

Table S8. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 
data analyzed using single season N-mixture models. Mean (95% credible interval) for bias and coefficient of variation from 500 
simulation runs for each suite of parameters. Different scenarios include combinations of high, average, and low abundance paired 
with either average or high detection. R = number of survey sites, J = number of replicate visits, λ = mean abundance per site, p = 
mean detection probability; CV = coefficient of variation for total population size (Total N) and N.site = estimated number of dusky 
grouse per survey site. 

Simulation Parameters 
Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N 

Probability 
CV 

 N.total > 0.15 

Protocol 
meets 

Management 
Requirements R J λ p 

High abundance, Average detection               
100 4 0.31 0.37 0.02, (-0.10, 0.15) 0.00, (-0.12, 0.10) 1.88, (-5.03, 11.22) 0.02, (-0.05, 0.11) 0.16, (0.09, 0.27) 0.51 no 
160 4 0.31 0.37 0.02, (-0.07, 0.13) -0.01, (-0.09, 0.08) 2.16, (-6.31, 13.34) 0.01, (-0.04, 0.08) 0.12, (0.08, 0.18) 0.15 no 
170 4 0.31 0.37 0.01, (-0.07, 0.09) 0.00, (-0.08, 0.08) 1.42, (-7.40, 11.02) 0.01, (-0.04, 0.06) 0.11, (0.08, 0.16) 0.08 yes 
180 4 0.31 0.37 0.00, (-0.07, 0.10) 0.00, (-0.08, 0.07) 1.06, (-8.16, 11.67) 0.01, (-0.05, 0.06) 0.11, (0.08, 0.15) 0.07 yes 
200 4 0.31 0.37 0.01, (-0.07, 0.10) 0.00, (-0.07, 0.07) 1.26, (-8.35, 12.68) 0.01, (-0.04, 0.06) 0.10, (0.07, 0.14) 0.02 yes 
100 3 0.31 0.37 0.04, (-0.10, 0.20) 0.00, (-0.12, 0.12) 3.53, (-6.05, 17.46) 0.04, (-0.06, 0.17) 0.26, (0.14, 0.45) 0.90 no 
200 3 0.31 0.37 0.02, (-0.07, 0.14) 0.00, (-0.10, 0.10) 3.35, (-9.88, 20.19) 0.02, (-0.05, 0.10) 0.16, (0.10, 0.24) 0.50 no 
300 3 0.31 0.37 0.01, (-0.06, 0.10) 0.00, (-0.07, 0.08) 2.29, (-12.37, 21.36) 0.01, (-0.04, 0.07) 0.12, (0.09, 0.16) 0.11 yes-ish 
320 3 0.31 0.37 0.01, (-0.07, 0.09) 0.00, (-0.08, 0.08) 2.75, (-16.97, 25.09) 0.01, (-0.05, 0.08) 0.12, (0.08, 0.16) 0.11 yes-ish 
330 3 0.31 0.37 0.01, (-0.07, 0.08) 0.00, (-0.07, 0.07) 3.13, (-13.59, 23.44) 0.01, (-0.04, 0.07) 0.12, (0.08, 0.16) 0.07 yes 
340 3 0.31 0.37 0.00, (-0.06, 0.08) 0.00, (-0.08, 0.08) 2.75, (-14.55, 22.55) 0.01, (-0.04, 0.07) 0.11, (0.08, 0.15) 0.07 yes 
360 3 0.31 0.37 0.00, (-0.06, 0.09) 0.00, (-0.07, 0.07) 1.33, (-16.21, 22.25) 0.00, (-0.05, 0.06) 0.11, (0.08, 0.14) 0.03 yes 
380 3 0.31 0.37 0.01, (-0.06, 0.08) 0.00, (-0.07, 0.08) 2.01, (-17.62, 22.76) 0.01, (-0.05, 0.06) 0.10, (0.08, 0.14) 0.02 yes 
400 3 0.31 0.37 0.01, (-0.06, 0.09) 0.00, (-0.07, 0.07) 2.95, (-15.44, 27.48) 0.01, (-0.04, 0.07) 0.10, (0.08, 0.14) 0.02 yes 
100 2 0.31 0.37 0.12, (-0.11, 0.54) 0.00, (-0.18, 0.18) 11.37, (-9.03, 52.50) 0.11, (-0.09, 0.53) 0.54, (0.22, 1.03) 1.00 no 
200 2 0.31 0.37 0.04, (-0.11, 0.25) 0.01, (-0.14, 0.16) 8.57, (-17.49, 47.24) 0.04, (-0.09, 0.24) 0.31, (0.16, 0.57) 0.96 no 
300 2 0.31 0.37 0.03, (-0.09, 0.20) 0.00, (-0.13, 0.13) 9.45, (-20.66, 58.09) 0.03, (-0.07, 0.19) 0.24, (0.14, 0.40) 0.91 no 
400 2 0.31 0.37 0.02, (-0.07, 0.16) 0.00, (-0.11, 0.12) 7.60, (-25.18, 54.73) 0.02, (-0.06, 0.14) 0.20, (0.12, 0.31) 0.82 no 
500 2 0.31 0.37 0.01, (-0.07, 0.11) 0.00, (-0.10, 0.10) 5.90, (-29.56, 47.75) 0.01, (-0.06, 0.10) 0.17, (0.12, 0.26) 0.67 no 
600 2 0.31 0.37 0.00, (-0.07, 0.09) 0.01, (-0.08, 0.10) 2.89, (-36.00, 50.37) 0.00, (-0.06, 0.08) 0.15, (0.10, 0.21) 0.42 no 
700 2 0.31 0.37 0.01, (-0.07, 0.10) 0.01, (-0.08, 0.09) 4.77, (-38.69, 61.93) 0.01, (-0.06, 0.09) 0.14, (0.10, 0.19) 0.28 no 
800 2 0.31 0.37 0.01, (-0.06, 0.09) 0.01, (-0.08, 0.09) 5.10, (-41.06, 66.28) 0.01, (-0.05, 0.08) 0.13, (0.09, 0.17) 0.15 no 
860 2 0.31 0.37 0.01, (-0.05, 0.09) 0.00, (-0.07, 0.08) 5.46, (-41.03, 64.88) 0.01, (-0.05, 0.08) 0.12, (0.09, 0.16) 0.11 yes-ish 
870 2 0.31 0.37 0.01, (-0.05, 0.09) 0.00, (-0.08, 0.08) 7.37, (-44.62, 75.69) 0.01, (-0.05, 0.09) 0.12, (0.09, 0.16) 0.13 no 
880 2 0.31 0.37 0.01, (-0.06, 0.08) 0.00, (-0.07, 0.08) 5.38, (-42.59, 59.15) 0.01, (-0.05, 0.07) 0.12, (0.09, 0.16) 0.10 yes 
890 2 0.31 0.37 0.00, (-0.06, 0.08) 0.01, (-0.08, 0.08) 4.27, (-45.13, 69.79) 0.00, (-0.05, 0.08) 0.12, (0.09, 0.16) 0.10 yes 
900 2 0.31 0.37 0.01, (-0.06, 0.08) 0.01, (-0.07, 0.09) 2.69, (-49.32, 65.74) 0.00, (-0.05, 0.07) 0.12, (0.09, 0.16) 0.08 yes 

           
Low abundance, Average detection               



100 4 0.08 0.37 0.02, (-0.03, 0.10) 0.00, (-0.17, 0.19) 1.58, (-2.01, 7.60) 0.02, (-0.02, 0.08) 0.41, (0.13, 1.03) 0.90 no 
200 4 0.08 0.37 0.01, (-0.03, 0.06) 0.00, (-0.13, 0.13) 1.31, (-3.15, 7.74) 0.01, (-0.02, 0.04) 0.21, (0.10, 0.41) 0.68 no 
300 4 0.08 0.37 0.00, (-0.03, 0.04) 0.00, (-0.10, 0.11) 0.88, (-4.64, 6.58) 0.00, (-0.02, 0.02) 0.15, (0.08, 0.26) 0.42 no 
400 4 0.08 0.37 0.00, (-0.02, 0.04) 0.00, (-0.10, 0.09) 1.34, (-4.70, 8.78) 0.00, (-0.01, 0.02) 0.13, (0.08, 0.20) 0.22 no 
480 4 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.08) 1.01, (-4.93, 7.82) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.17) 0.11 yes-ish 
490 4 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.08, 0.08) 0.81, (-5.01, 7.52) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.08 yes 
500 4 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.08) 1.15, (-5.55, 9.20) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.17) 0.10 yes 
100 3 0.08 0.37 0.03, (-0.04, 0.16) 0.01, (-0.19, 0.22) 3.15, (-2.93, 15.56) 0.03, (-0.03, 0.16) 0.63, (0.21, 1.48) 0.99 no 
200 3 0.08 0.37 0.01, (-0.04, 0.08) 0.01, (-0.16, 0.19) 2.72, (-3.90, 14.95) 0.01, (-0.02, 0.07) 0.36, (0.13, 0.84) 0.92 no 
300 3 0.08 0.37 0.01, (-0.03, 0.06) 0.00, (-0.15, 0.14) 2.45, (-6.08, 15.59) 0.01, (-0.02, 0.05) 0.25, (0.13, 0.51) 0.85 no 
400 3 0.08 0.37 0.01, (-0.02, 0.05) 0.00, (-0.12, 0.13) 2.45, (-6.62, 15.33) 0.01, (-0.02, 0.04) 0.20, (0.11, 0.34) 0.73 no 
500 3 0.08 0.37 0.00, (-0.03, 0.04) 0.00, (-0.11, 0.12) 2.38, (-7.97, 16.00) 0.00, (-0.02, 0.03) 0.17, (0.10, 0.28) 0.62 no 
600 3 0.08 0.37 0.00, (-0.02, 0.04) 0.00, (-0.10, 0.11) 2.07, (-8.32, 16.37) 0.00, (-0.01, 0.03) 0.15, (0.10, 0.23) 0.44 no 
700 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.08, 0.09) 1.97, (-8.20, 13.22) 0.00, (-0.01, 0.02) 0.14, (0.09, 0.21) 0.29 no 
800 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.11) 1.71, (-10.78, 18.78) 0.00, (-0.01, 0.02) 0.13, (0.08, 0.19) 0.22 no 
900 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.08) 2.03, (-10.17, 16.32) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.18) 0.13 no 
910 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.09) 2.24, (-10.80, 19.64) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.17) 0.12 no 
920 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 1.46, (-10.82, 17.11) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.17) 0.10 yes 
940 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.07, 0.09) 1.94, (-11.25, 16.90) 0.00, (-0.01, 0.02) 0.11, (0.08, 0.16) 0.08 yes 
960 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 2.13, (-10.50, 16.33) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.16) 0.09 yes 
980 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 1.97, (-11.36, 17.12) 0.00, (-0.01, 0.02) 0.11, (0.08, 0.16) 0.08 yes 

1000 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 2.27, (-10.53, 17.82) 0.00, (-0.01, 0.02) 0.11, (0.08, 0.16) 0.07 yes 
100 2 0.08 0.37 0.06, (-0.05, 0.24) 0.04, (-0.16, 0.31) 5.56, (-3.76, 21.43) 0.06, (-0.04, 0.21) 1.33, (0.33, 2.23) 1.00 no 
200 2 0.08 0.37 0.04, (-0.04, 0.17) 0.02, (-0.18, 0.26) 7.00, (-5.71, 32.15) 0.04, (-0.03, 0.16) 0.71, (0.23, 1.52) 0.99 no 
300 2 0.08 0.37 0.03, (-0.03, 0.12) 0.02, (-0.17, 0.21) 7.42, (-7.29, 39.62) 0.02, (-0.02, 0.13) 0.53, (0.20, 1.04) 0.99 no 
400 2 0.08 0.37 0.02, (-0.03, 0.11) 0.01, (-0.18, 0.19) 8.36, (-9.54, 43.31) 0.02, (-0.02, 0.11) 0.44, (0.19, 0.92) 0.99 no 
500 2 0.08 0.37 0.02, (-0.03, 0.08) 0.00, (-0.17, 0.16) 9.59, (-10.82, 44.49) 0.02, (-0.02, 0.09) 0.40, (0.19, 0.80) 0.99 no 
600 2 0.08 0.37 0.02, (-0.03, 0.08) 0.00, (-0.16, 0.15) 9.36, (-12.34, 46.55) 0.02, (-0.02, 0.08) 0.34, (0.17, 0.64) 0.98 no 
700 2 0.08 0.37 0.01, (-0.02, 0.07) 0.01, (-0.14, 0.16) 7.69, (-12.79, 46.84) 0.01, (-0.02, 0.07) 0.31, (0.15, 0.66) 0.95 no 
800 2 0.08 0.37 0.01, (-0.02, 0.06) 0.00, (-0.15, 0.14) 9.14, (-16.62, 48.21) 0.01, (-0.02, 0.06) 0.30, (0.15, 0.59) 0.95 no 
900 2 0.08 0.37 0.01, (-0.02, 0.05) 0.01, (-0.12, 0.15) 7.25, (-17.19, 40.63) 0.01, (-0.02, 0.05) 0.27, (0.13, 0.52) 0.91 no 

1000 2 0.08 0.37 0.01, (-0.02, 0.04) 0.00, (-0.12, 0.12) 7.82, (-18.24, 41.21) 0.01, (-0.02, 0.04) 0.24, (0.14, 0.45) 0.89 no 
1100 2 0.08 0.37 0.01, (-0.02, 0.04) 0.01, (-0.11, 0.13) 5.25, (-19.37, 41.46) 0.00, (-0.02, 0.04) 0.22, (0.13, 0.39) 0.85 no 
1200 2 0.08 0.37 0.00, (-0.02, 0.04) 0.00, (-0.11, 0.12) 6.14, (-20.92, 48.08) 0.01, (-0.02, 0.04) 0.22, (0.12, 0.38) 0.83 no 
1300 2 0.08 0.37 0.01, (-0.02, 0.04) 0.01, (-0.11, 0.12) 6.49, (-22.34, 48.53) 0.00, (-0.02, 0.04) 0.20, (0.12, 0.34) 0.74 no 
1400 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.11, 0.11) 6.12, (-21.42, 45.54) 0.00, (-0.02, 0.03) 0.19, (0.12, 0.32) 0.74 no 
1500 2 0.08 0.37 0.01, (-0.02, 0.03) 0.00, (-0.10, 0.10) 8.10, (-22.94, 50.46) 0.01, (-0.02, 0.03) 0.19, (0.12, 0.33) 0.71 no 
1600 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.10, 0.10) 7.07, (-24.16, 51.10) 0.00, (-0.02, 0.03) 0.18, (0.11, 0.27) 0.66 no 
1700 2 0.08 0.37 0.00, (-0.02, 0.03) 0.01, (-0.09, 0.10) 4.55, (-26.91, 47.20) 0.00, (-0.02, 0.03) 0.17, (0.11, 0.26) 0.55 no 
1800 2 0.08 0.37 0.00, (-0.02, 0.03) 0.01, (-0.10, 0.11) 5.79, (-28.18, 50.65) 0.00, (-0.02, 0.03) 0.16, (0.11, 0.24) 0.52 no 
1900 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.10) 6.06, (-29.78, 51.22) 0.00, (-0.02, 0.03) 0.16, (0.10, 0.23) 0.49 no 
2000 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.10) 6.81, (-26.32, 52.48) 0.00, (-0.01, 0.03) 0.15, (0.10, 0.23) 0.43 no 
2100 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.08, 0.10) 4.50, (-32.48, 48.72) 0.00, (-0.02, 0.02) 0.15, (0.10, 0.21) 0.39 no 
2200 2 0.08 0.37 0.00, (-0.01, 0.03) 0.00, (-0.09, 0.09) 6.71, (-29.46, 55.89) 0.00, (-0.01, 0.03) 0.15, (0.10, 0.22) 0.33 no 
2300 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.09, 0.09) 4.95, (-29.89, 51.25) 0.00, (-0.01, 0.02) 0.14, (0.10, 0.20) 0.27 no 



2400 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.08, 0.09) 4.08, (-35.24, 50.71) 0.00, (-0.01, 0.02) 0.13, (0.10, 0.20) 0.23 no 
2500 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.08, 0.09) 5.56, (-35.94, 53.71) 0.00, (-0.01, 0.02) 0.14, (0.09, 0.20) 0.24 no 
2600 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.09) 4.58, (-34.24, 53.14) 0.00, (-0.01, 0.02) 0.13, (0.09, 0.19) 0.18 no 
2700 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.09) 6.38, (-34.09, 54.91) 0.00, (-0.01, 0.02) 0.13, (0.09, 0.19) 0.18 no 
2800 2 0.08 0.37 0.00, (-0.01, 0.02) 0.01, (-0.07, 0.08) 3.69, (-36.63, 57.70) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.17) 0.11 yes-ish 
2900 2 0.08 0.37 0.00, (-0.01, 0.02) 0.01, (-0.07, 0.08) 3.57, (-37.58, 51.97) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.17) 0.12 no 
2910 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.07, 0.08) 5.02, (-35.49, 55.29) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.08 yes 
2920 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.06, 0.08) 2.61, (-34.79, 51.97) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.06 yes 
2940 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 4.05, (-35.93, 60.19) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.16) 0.08 yes 
2960 2 0.08 0.37 0.00, (-0.01, 0.02) 0.00, (-0.07, 0.08) 4.75, (-36.66, 57.51) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.07 yes 
2980 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.07, 0.08) 3.26, (-36.81, 58.49) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.05 yes 
3000 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.07, 0.08) 5.78, (-37.41, 53.92) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.07 yes 

           
Average abundance, Average detection               

100 4 0.18 0.37 0.01, (-0.07, 0.11) 0.01, (-0.12, 0.14) 1.11, (-3.95, 7.48) 0.01, (-0.04, 0.07) 0.21, (0.10, 0.42) 0.69 no 
200 4 0.18 0.37 0.01, (-0.04, 0.07) 0.00, (-0.08, 0.09) 1.36, (-4.86, 8.47) 0.01, (-0.02, 0.04) 0.13, (0.08, 0.19) 0.20 no 
220 4 0.18 0.37 0.01, (-0.05, 0.07) 0.00, (-0.09, 0.09) 1.25, (-6.32, 9.73) 0.01, (-0.03, 0.04) 0.12, (0.08, 0.18) 0.18 no 
230 4 0.18 0.37 0.01, (-0.05, 0.07) 0.00, (-0.08, 0.09) 1.28, (-5.73, 9.49) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.17) 0.11 yes-ish 
240 4 0.18 0.37 0.00, (-0.05, 0.06) 0.00, (-0.09, 0.09) 0.89, (-6.76, 9.53) 0.00, (-0.03, 0.04) 0.11, (0.07, 0.17) 0.09 yes 
260 4 0.18 0.37 0.01, (-0.04, 0.06) 0.00, (-0.09, 0.08) 1.37, (-6.84, 10.57) 0.01, (-0.03, 0.04) 0.11, (0.07, 0.16) 0.08 yes 
280 4 0.18 0.37 0.00, (-0.04, 0.06) 0.00, (-0.08, 0.07) 1.33, (-5.95, 9.43) 0.00, (-0.02, 0.03) 0.10, (0.07, 0.15) 0.04 yes 
300 4 0.18 0.37 0.00, (-0.05, 0.06) 0.00, (-0.07, 0.07) 1.00, (-7.05, 9.48) 0.00, (-0.02, 0.03) 0.10, (0.07, 0.14) 0.03 yes 
100 3 0.18 0.37 0.03, (-0.08, 0.21) 0.00, (-0.17, 0.16) 3.44, (-4.89, 16.05) 0.03, (-0.05, 0.16) 0.37, (0.15, 0.82) 0.95 no 
200 3 0.18 0.37 0.02, (-0.06, 0.11) 0.00, (-0.13, 0.11) 3.41, (-7.04, 19.31) 0.02, (-0.04, 0.10) 0.21, (0.12, 0.38) 0.76 no 
300 3 0.18 0.37 0.01, (-0.04, 0.07) 0.00, (-0.11, 0.11) 2.63, (-8.97, 17.91) 0.01, (-0.03, 0.06) 0.15, (0.10, 0.24) 0.44 no 
400 3 0.18 0.37 0.01, (-0.04, 0.07) 0.00, (-0.09, 0.09) 2.39, (-10.22, 18.97) 0.01, (-0.03, 0.05) 0.13, (0.09, 0.18) 0.20 no 
460 3 0.18 0.37 0.01, (-0.04, 0.06) 0.00, (-0.09, 0.08) 2.49, (-11.72, 21.05) 0.01, (-0.03, 0.05) 0.12, (0.08, 0.16) 0.11 yes-ish 
470 3 0.18 0.37 0.00, (-0.04, 0.05) 0.00, (-0.09, 0.08) 2.17, (-13.10, 20.65) 0.00, (-0.03, 0.04) 0.12, (0.08, 0.16) 0.12 no 
480 3 0.18 0.37 0.00, (-0.04, 0.05) 0.01, (-0.07, 0.08) 1.54, (-12.38, 18.62) 0.00, (-0.03, 0.04) 0.11, (0.08, 0.16) 0.07 yes 
500 3 0.18 0.37 0.01, (-0.04, 0.06) 0.00, (-0.09, 0.08) 1.90, (-14.07, 21.18) 0.00, (-0.03, 0.04) 0.11, (0.08, 0.15) 0.07 yes 
100 2 0.18 0.37 0.09, (-0.08, 0.39) 0.02, (-0.18, 0.25) 8.78, (-6.90, 35.60) 0.09, (-0.07, 0.36) 0.69, (0.26, 1.35) 0.99 no 
200 2 0.18 0.37 0.05, (-0.07, 0.25) 0.01, (-0.18, 0.19) 9.48, (-10.33, 46.88) 0.05, (-0.05, 0.23) 0.42, (0.19, 0.75) 0.99 no 
300 2 0.18 0.37 0.03, (-0.06, 0.16) 0.00, (-0.15, 0.15) 8.66, (-13.87, 46.58) 0.03, (-0.05, 0.16) 0.32, (0.16, 0.56) 0.98 no 
400 2 0.18 0.37 0.02, (-0.05, 0.12) 0.00, (-0.14, 0.14) 7.97, (-13.87, 46.58) 0.02, (-0.04, 0.12) 0.26, (0.14, 0.42) 0.93 no 
500 2 0.18 0.37 0.01, (-0.05, 0.10) 0.00, (-0.12, 0.13) 6.41, (-21.90, 44.79) 0.01, (-0.04, 0.09) 0.22, (0.13, 0.36) 0.89 no 
600 2 0.18 0.37 0.01, (-0.04, 0.09) 0.00, (-0.11, 0.11) 7.27, (-21.72, 53.29) 0.01, (-0.04, 0.09) 0.20, (0.13, 0.31) 0.82 no 
700 2 0.18 0.37 0.01, (-0.04, 0.08) 0.01, (-0.10, 0.10) 6.19, (-24.29, 51.59) 0.01, (-0.03, 0.07) 0.18, (0.12, 0.17) 0.72 no 
800 2 0.18 0.37 0.01, (-0.04, 0.08) 0.01, (-0.10, 0.10) 8.45, (-25.50, 56.03) 0.01, (-0.03, 0.07) 0.17, (0.11, 0.24) 0.64 no 
900 2 0.18 0.37 0.01, (-0.04, 0.07) 0.01, (-0.09, 0.09) 5.08, (-31.26, 52.11) 0.01, (-0.03, 0.06) 0.15, (0.11, 0.21) 0.49 no 

1000 2 0.18 0.37 0.01, (-0.04, 0.05) 0.01, (-0.08, 0.10) 3.42, (-32.63, 49.22) 0.00, (-0.03, 0.05) 0.14, (0.10, 0.20) 0.38 no 
1100 2 0.18 0.37 0.01, (-0.03, 0.06) 0.00, (-0.08, 0.08) 6.42, (-31.86, 58.32) 0.01, (-0.03, 0.05) 0.14, (0.10, 0.19) 0.28 no 
1200 2 0.18 0.37 0.01, (-0.04, 0.05) 0.01, (-0.07, 0.09) 3.69, (-36.53, 52.85) 0.00, (-0.03, 0.04) 0.13, (0.09, 0.17) 0.16 no 
1300 2 0.18 0.37 0.01, (-0.04, 0.05) 0.01, (-0.07, 0.09) 2.23, (-38.73, 53.64) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.16) 0.11 yes-ish 
1320 2 0.18 0.37 0.00, (-0.03, 0.05) 0.00, (-0.08, 0.07) 6.10, (-35.34, 59.26) 0.00, (-0.03, 0.04) 0.13, (0.09, 0.17) 0.14 no 
1330 2 0.18 0.37 0.00, (-0.04, 0.05) 0.00, (-0.09, 0.08) 4.99, (-41.55, 65.46) 0.00, (-0.03, 0.05) 0.12, (0.09, 0.16) 0.11 yes-ish 



1340 2 0.18 0.37 0.00, (-0.03, 0.05) 0.00, (-0.08, 0.08) 4.90, (-39.91, 60.40) 0.00, (-0.03, 0.05) 0.12, (0.09, 0.16) 0.10 yes 
1360 2 0.18 0.37 0.00, (-0.03, 0.04) 0.01, (-0.06, 0.08) 1.61, (-39.08, 49.20) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.15) 0.06 yes 
1380 2 0.18 0.37 0.00, (-0.04, 0.05) 0.00, (-0.08, 0.08) 3.96, (-40.50, 61.42) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.16) 0.09 yes 
1400 2 0.18 0.37 0.00, (-0.03, 0.04) 0.01, (-0.07, 0.08) 2.88, (-41.57, 55.45) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.16) 0.07 yes 

           
High abundance, High Detection                

40 4 0.31 0.57 0.02, (-0.13, 0.20) -0.01, (-0.15, 0.12) 0.52, (-1.46, 2.65) 0.01, (-0.04, 0.07) 0.12, (0.05, 0.24) 0.21 no 
50 4 0.31 0.57 0.01, (-0.12, 0.15) -0.01, (-0.14, 0.11) 0.46, (-1.75, 2.79) 0.01, (-0.03, 0.06) 0.10, (0.05, 0.18) 0.11 yes-ish 
60 4 0.31 0.57 0.01, (-0.11, 0.14) -0.01, (-0.12, 0.10) 0.34, (-1.86, 2.51) 0.01, (-0.03, 0.04) 0.08, (0.05, 0.14) 0.04 yes 
80 4 0.31 0.57 0.01, (-0.10, 0.12) -0.01, (-0.12, 0.09) 0.54, (-2.26, 3.09) 0.01, (-0.03, 0.04) 0.07, (0.04, 0.11) 0.01 yes 
100 4 0.31 0.57 0.00, (-0.09, 0.10) -0.01, (-0.09, 0.08) 0.46, (-2.30, 3.21) 0.00, (-0.02, 0.03) 0.06, (0.04, 0.09) 0.00 yes 
80 3 0.31 0.57 0.01, (-0.09, 0.15) -0.02, (-0.15, 0.10) 1.04, (-3.19, 5.81) 0.01, (-0.04, 0.07) 0.12, (0.06, 0.21) 0.20 no 
90 3 0.31 0.57 0.01, (-0.09, 0.14) -0.01, (-0.14, 0.09) 1.17, (-2.98, 6.04) 0.01, (-0.03, 0.07) 0.11, (0.06, 0.17) 0.11 yes-ish 
100 3 0.31 0.57 0.01, (-0.09, 0.12) -0.02, (-0.13, 0.10) 1.17, (-3.50, 6.48) 0.01, (-0.03, 0.06) 0.10, (0.06, 0.16) 0.07 yes 
100 2 0.31 0.57 0.03, (-0.10, 0.20) -0.01, (-0.18, 0.14) 3.10, (-5.43, 15.37) 0.03, (-0.05, 0.15) 0.22, (0.10, 0.42) 0.71 no 
200 2 0.31 0.57 0.01, (-0.07, 0.12) -0.01, (-0.15, 0.11) 3.09, (-8.55, 18.66) 0.02, (-0.04, 0.09) 0.13, (0.08, 0.22) 0.27 no 
260 2 0.31 0.57 0.01, (-0.06, 0.10) -0.02, (-0.13, 0.09) 3.93, (-8.86, 19.64) 0.02, (-0.03, 0.08) 0.11, (0.07, 0.17) 0.11 yes-ish 
270 2 0.31 0.57 0.01, (-0.06, 0.09) -0.01, (-0.12, 0.10) 2.65, (-10.68, 19.44) 0.01, (-0.04, 0.07) 0.11, (0.07, 0.16) 0.10 yes 
280 2 0.31 0.57 0.01, (-0.06, 0.09) -0.01, (-0.12, 0.10) 2.89, (-11.67, 18.31) 0.01, (-0.04, 0.07) 0.10, (0.07, 0.16) 0.06 yes 
300 2 0.31 0.57 0.01, (-0.06, 0.08) 0.00, (-0.12, 0.11) 2.38, (-11.06, 17.92) 0.01, (-0.04, 0.06) 0.10, (0.06, 0.14) 0.05 yes 

           
Average abundance, High detection               

60 4 0.18 0.57 0.01, (-0.08, 0.12) -0.01, (-0.16, 0.11) 0.40, (-1.35, 1.93) 0.01, (-0.02, 0.03) 0.12, (0.05, 0.24) 0.19 no 
70 4 0.18 0.57 0.00, (-0.08, 0.09) -0.01, (-0.16, 0.13) 0.40, (-1.40, 2.08) 0.01, (-0.02, 0.03) 0.10, (0.04, 0.20) 0.13 no 
80 4 0.18 0.57 0.01, (-0.07, 0.10) -0.01, (-0.15, 0.11) 0.44, (-1.53, 2.09) 0.01, (-0.02, 0.03) 0.09, (0.04, 0.16) 0.08 yes 
100 4 0.18 0.57 0.00, (-0.06, 0.07) -0.01, (-0.11, 0.10) 0.38, (-1.78, 2.14) 0.00, (-0.02, 0.02) 0.08, (0.04, 0.12) 0.02 yes 
100 3 0.18 0.57 0.01, (-0.06, 0.09) -0.02, (-0.16, 0.11) 0.92, (-2.17, 4.61) 0.01, (-0.02, 0.05) 0.13, (0.06, 0.24) 0.29 no 
120 3 0.18 0.57 0.01, (-0.06, 0.08) -0.01, (-0.15, 0.11) 0.90, (-2.83, 5.00) 0.01, (-0.02, 0.04) 0.12, (0.06, 0.20) 0.20 no 
130 3 0.18 0.57 0.01, (-0.05, 0.08) -0.02, (-0.16, 0.10) 0.94, (-2.47, 5.02) 0.01, (-0.02, 0.04) 0.11, (0.06, 0.21) 0.14 no 
140 3 0.18 0.57 0.01, (-0.05, 0.07) -0.01, (-0.15, 0.11) 1.04, (-2.65, 5.62) 0.01, (-0.02, 0.04) 0.10, (0.06, 0.18) 0.10 yes 
160 3 0.18 0.57 0.01, (-0.06, 0.07) -0.01, (-0.13, 0.10) 0.81, (-3.10, 5.26) 0.01, (-0.02, 0.03) 0.09, (0.05, 0.16) 0.06 yes 
180 3 0.18 0.57 0.00, (-0.05, 0.07) -0.01, (-0.12, 0.09) 0.75, (-3.39, 5.10) 0.00, (-0.02, 0.03) 0.09, (0.05, 0.14) 0.03 yes 
200 3 0.18 0.57 0.00, (-0.05, 0.05) 0.00, (-0.10, 0.09) 0.37, (-4.24, 4.27) 0.00, (-0.02, 0.02) 0.08, (0.05, 0.12) 0.01 yes 
100 2 0.18 0.57 0.04, (-0.06, 0.17) -0.03, (-0.25, 0.17) 3.64, (-4.01, 14.15) 0.04, (-0.04, 0.14) 0.33, (0.11, 0.74) 0.87 no 
200 2 0.18 0.57 0.02, (-0.04, 0.09) -0.02, (-0.18, 0.12) 2.95, (-5.82, 15.54) 0.01, (-0.03, 0.08) 0.18, (0.09, 0.32) 0.60 no 
300 2 0.18 0.57 0.01, (-0.04, 0.06) -0.01, (-0.14, 0.11) 2.68, (-7.26, 14.43) 0.01, (-0.02, 0.05) 0.13, (0.08, 0.20) 0.26 no 
360 2 0.18 0.57 0.01, (-0.04, 0.06) 0.00, (-0.11, 0.11) 2.08, (-8.82, 14.99) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.17) 0.12 no 
370 2 0.18 0.57 0.01, (-0.04, 0.06) 0.00, (-0.13, 0.10) 2.10, (-8.79, 17.11) 0.01, (-0.02, 0.05) 0.11, (0.07, 0.17) 0.12 no 
380 2 0.18 0.57 0.01, (-0.04, 0.05) 0.00, (-0.12, 0.10) 2.16, (-8.01, 16.90) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.16) 0.09 yes 
400 2 0.18 0.57 0.00, (-0.04, 0.05) -0.01, (-0.12, 0.09) 2.35, (-8.74, 15.74) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.16) 0.08 yes 

           
Low abundance, High detection                 

100 4 0.08 0.57 0.00, (-0.04, 0.06) -0.01, (-0.17, 0.14) 0.32, (-0.94, 1.51) 0.00, (-0.01, 0.02) 0.15, (0.05, 0.30) 0.27 no 
120 4 0.08 0.57 0.00, (-0.04, 0.05) -0.02, (-0.18, 0.13) 0.34, (-0.93, 1.65) 0.00, (-0.01, 0.01) 0.13, (0.05, 0.27) 0.20 no 
130 4 0.08 0.57 0.00, (-0.04, 0.04) -0.01, (-0.16, 0.12) 0.33, (-1.29, 1.86) 0.00, (-0.01, 0.01) 0.11, (0.05, 0.21) 0.15 no 



140 4 0.08 0.57 0.00, (-0.04, 0.05) -0.01, (-0.15, 0.13) 0.25, (-1.34, 1.57) 0.00, (-0.01, 0.01) 0.10, (0.04, 0.18) 0.10 yes 
160 4 0.08 0.57 0.00, (-0.03, 0.04) -0.01, (-0.16, 0.11) 0.36, (-1.20, 1.78) 0.00, (-0.01, 0.01) 0.09, (0.04, 0.18) 0.10 yes 
180 4 0.08 0.57 0.00, (-0.03, 0.04) -0.02, (-0.14, 0.10) 0.40, (-1.27, 1.87) 0.00, (-0.01, 0.01) 0.08, (0.04, 0.15) 0.05 yes 
200 4 0.08 0.57 0.00, (-0.03, 0.03) -0.01, (-0.14, 0.11) 0.32, (-1.51, 1.95) 0.00, (-0.01, 0.01) 0.07, (0.04, 0.14) 0.04 yes 
100 3 0.08 0.57 0.01, (-0.04, 0.06) -0.03, (-0.25, 0.16) 1.07, (-1.30, 4.70) 0.01, (-0.01, 0.05) 0.30, (0.09, 0.75) 0.71 no 
200 3 0.08 0.57 0.01, (-0.03, 0.05) -0.01, (-0.17, 0.13) 0.83, (-2.19, 3.84) 0.00, (-0.01, 0.02) 0.13, (0.06, 0.27) 0.28 no 
260 3 0.08 0.57 0.00, (-0.03, 0.04) -0.01, (-0.15, 0.11) 0.64, (-2.90, 4.18) 0.00, (-0.01, 0.02) 0.11, (0.05, 0.20) 0.14 no 
270 3 0.08 0.57 0.00, (-0.03, 0.03) -0.01, (-0.15, 0.12) 0.80, (-2.34, 4.55) 0.00, (-0.01, 0.02) 0.11, (0.05, 0.19) 0.14 no 
280 3 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.14, 0.12) 0.65, (-2.59, 3.81) 0.00, (-0.01, 0.01) 0.10, (0.05, 0.18) 0.10 yes 
300 3 0.08 0.57 0.00, (-0.02, 0.04) -0.01, (-0.12, 0.11) 0.60, (-2.60, 4.04) 0.00, (-0.01, 0.01) 0.09, (0.05, 0.16) 0.06 yes 
100 2 0.08 0.57 0.03, (-0.04, 0.17) -0.04, (-0.31, 0.20) 3.48, (-1.87, 17.18) 0.03, (-0.02, 0.17) 0.72, (0.16, 1.50) 0.96 no 
200 2 0.08 0.57 0.02, (-0.03, 0.08) -0.03, (-0.27, 0.18) 3.35, (-3.14, 16.23) 0.02, (-0.02, 0.08) 0.34, (0.11, 0.90) 0.85 no 
300 2 0.08 0.57 0.01, (-0.03, 0.05) -0.02, (-0.21, 0.14) 2.51, (-4.26, 12.63) 0.01, (-0.01, 0.04) 0.23, (0.10, 0.44) 0.74 no 
400 2 0.08 0.57 0.01, (-0.02, 0.04) -0.01, (-0.16, 0.14) 2.33, (-5.14, 13.15) 0.01, (-0.01, 0.03) 0.18, (0.09, 0.30) 0.56 no 
500 2 0.08 0.57 0.00, (-0.02, 0.03) 0.00, (-0.15, 0.12) 1.73, (-6.34, 13.81) 0.00, (-0.01, 0.03) 0.15, (0.08, 0.24) 0.38 no 
600 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.15, 0.11) 2.12, (-6.84, 14.17) 0.00, (-0.01, 0.02) 0.13, (0.08, 0.22) 0.26 no 
700 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.13, 0.10) 2.05, (-7.04, 12.92) 0.00, (-0.01, 0.02) 0.12, (0.07, 0.19) 0.18 no 
800 2 0.08 0.57 0.00, (-0.02, 0.02) -0.01, (-0.14, 0.10) 2.55, (-8.43, 14.68) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.18) 0.12 no 
810 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.12, 0.11) 2.21, (-8.07, 14.45) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.09 yes 
820 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.12, 0.11) 2.34, (-8.14, 15.44) 0.00, (-0.01, 0.02) 0.11, (0.06, 0.16) 0.09 yes 
840 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.12, 0.10) 2.03, (-7.51, 13.65) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.07 yes 
860 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.13, 0.09) 2.71, (-8.18, 16.54) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.09 yes 
880 2 0.08 0.57 0.00, (-0.02, 0.02) -0.01, (-0.13, 0.09) 2.42, (-8.03, 16.64) 0.00, (-0.01, 0.02) 0.10, (0.07, 0.16) 0.07 yes 
900 2 0.08 0.57 0.00, (-0.02, 0.02) -0.01, (-0.11, 0.09) 1.90, (-8.58, 13.68) 0.00, (-0.01, 0.02) 0.10, (0.07, 0.15) 0.05 yes 

 

  



Table S9. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 
data analyzed hierarchical distance sampling models. Mean (95% credible interval) for bias and coefficient of variation from 500 
simulation runs for each suite of parameters. Different scenarios include combinations of high, average, and low abundance paired 
with either average or high detection. R = number of survey sites, λ = mean abundance per site, sigma = sigma for calculating the half-
normal detection function; CV = coefficient of variation for total population size (Total N) and N.site = estimated number of dusky 
grouse per survey site. 

Simulation Parameters 
Bias in λ Bias in sigma Bias in Total N Bias in N.site CV Total N 

Probability 
CV 

 N.total > 0.15 

Protocol meets 
 Management 
 Requirements R λ sigma 

High abundance, Average detection             
100 0.31 43 -0.03, (-0.18, 0.25) 12.49, (-8.02, 31.07) -2.69 (-18.05, 23.53) -0.03, (-0.18, 0.24) 0.45 (0.31, 0.62) 1.00 no 
200 0.31 43 -0.04, (-0.16, 0.15) 9.33, (-6.36, 27.07) -5.86 (-29.45, 26.54) -0.03, (-0.15, 0.13) 0.33 (0.27, 0.41) 1.00 no 
300 0.31 43 -0.03, (-0.15, 0.12) 6.76, (-6.15, 24.38) -6.83 (-37.74, 34.02) -0.02, (-0.13, 0.11) 0.27 (0.23, 0.32) 1.00 no 
400 0.31 43 -0.03, (-0.13, 0.10) 5.06, (-4.71, 20.20) -8.67 (-51.63, 37.50) -0.02, (-0.13, 0.09) 0.24 (0.20, 0.27) 1.00 no 
500 0.31 43 -0.02, (-0.13, 0.09) 4.09, (-5.55, 18.37) -10.39 (-58.87, 46.26) -0.02, (-0.12, 0.09) 0.21 (0.18, 0.24) 1.00 no 
600 0.31 43 -0.02, (-0.11, 0.09) 3.20, (-4.32, 13.62) -9.94 (-62.57, 46.39) -0.02, (-0.10, 0.08) 0.19 (0.17, 0.22) 1.00 no 
700 0.31 43 -0.02, (-0.11, 0.07) 2.80, (-4.63, 12.15) -13.90 (-69.13, 40.18) -0.02, (-0.10, 0.06) 0.18 (0.16, 0.20) 0.99 no 
800 0.31 43 -0.02, (-0.10, 0.07) 2.41, (-4.33, 10.63) -12.23 (-76.15, 54.38) -0.02, (-0.10, 0.07) 0.16 (0.14, 0.18) 0.85 no 
900 0.31 43 -0.02, (-0.10, 0.06) 2.38, (-3.72, 11.16) -14.95 (-79.90, 56.56) -0.02, (-0.09, 0.06) 0.15 (0.14, 0.17) 0.62 no 

1000 0.31 43 -0.02, (-0.09, 0.05) 1.86, (-3.68, 9.58) -15.56 (-86.52, 58.16) -0.02, (-0.09, 0.06) 0.15 (0.13, 0.16) 0.30 no 
1080 0.31 43 -0.02, (-0.09, 0.06) 1.93, (-3.45, 9.13) -17.44 (-89.20, 60.15) -0.02, (-0.08, 0.06) 0.14 (0.13, 0.15) 0.11 yes-ish 
1090 0.31 43 -0.02, (-0.09, 0.06) 2.10, (-3.15, 8.94) -18.79 (-88.97, 51.88) -0.02, (-0.08, 0.05) 0.14 (0.13, 0.15) 0.09 yes 
1100 0.31 43 -0.02, (-0.09, 0.06) 1.96, (-3.74, 8.62) -18.82 (-88.62, 61.83) -0.02, (-0.08, 0.06) 0.14 (0.13, 0.15) 0.09 yes 

          
Low abundance, Average detection             

100 0.08 43 -0.01, (-0.08, 0.14) 14.28, (-8.12, 29.67) 1.51 (-6.81, 13.36) -0.02, (-0.07, 0.13) 4.13 (0.48, 32.36) 1.00 no 
200 0.08 43 0.00, (-0.06, 0.10) 14.16, (-8.22, 31.40) 0.24 (-10.30, 17.32) -0.00, (-0.05, 0.09) 0.73 (0.37, 0.97) 1.00 no 
300 0.08 43 -0.01, (-0.05, 0.06) 13.25, (-7.69, 30.94) -1.77 (-14.30, 16.92) -0.01, (-0.05, 0.06) 0.51 (0.34, 0.72) 1.00 no 
400 0.08 43 -0.01, (-0.05, 0.06) 11.85, (-8.94, 29.75) -2.12 (-18.13, 22.77) -0.01, (-0.05, 0.06) 0.45 (0.32, 0.58) 1.00 no 
500 0.08 43 -0.01, (-0.05, 0.06) 11.98, (-8.15, 32.05) -3.51 (-21.65, 25.54) -0.01, (-0.04, 0.05) 0.39 (0.29, 0.50) 1.00 no 
600 0.08 43 -0.01, (-0.05, 0.05) 10.85, (-7.17, 28.07) -4.69 (-25.74, 23.21) -0.01, (-0.04, 0.04) 0.37 (0.29, 0.47) 1.00 no 
700 0.08 43 -0.01, (-0.04, 0.04) 9.18, (-7.45, 28.12) -3.42 (-27.03, 28.64) -0.00, (-0.04, 0.04) 0.34 (0.27, 0.42) 1.00 no 
800 0.08 43 -0.01, (-0.04, 0.04) 9.77, (-5.85, 28.00) -7.49 (-30.99, 25.53) -0.01, (-0.04, 0.03) 0.33 (0.26, 0.40) 1.00 no 
900 0.08 43 -0.01, (-0.04, 0.03) 9.45, (-5.57, 27.95) -8.05 (-36.32, 26.72) -0.01, (-0.04, 0.03) 0.31 (0.25, 0.37) 1.00 no 

1000 0.08 43 -0.01, (-0.04, 0.03) 8.49, (-5.67, 27.47) -7.70 (-36.40, 29.51) -0.01, (-0.04, 0.03) 0.29 (0.24, 0.35) 1.00 no 
1100 0.08 43 -0.01, (-0.04, 0.03) 7.01, (-5.92, 24.80) -7.10 (-38.17, 31.39) -0.01, (-0.03, 0.03) 0.28 (0.24, 0.34) 1.00 no 
1200 0.08 43 -0.01, (-0.04, 0.03) 7.12, (-6.04, 25.24) -8.17 (-42.23, 33.67) -0.01, (-0.04, 0.03) 0.27 (0.22, 0.31) 1.00 no 
1300 0.08 43 -0.01, (-0.04, 0.03) 6.33, (-5.33, 23.55) -8.84 (-47.22, 37.38) -0.01, (-0.04, 0.03) 0.26 (0.22, 0.30) 1.00 no 
1400 0.08 43 -0.01, (-0.04, 0.02) 5.88, (-5.18, 21.26) -9.01 (-47.30, 31.65) -0.01, (-0.03, 0.02) 0.25 (0.22, 0.29) 1.00 no 
1500 0.08 43 -0.01, (-0.04, 0.03) 5.93, (-5.74, 23.13) -10.50 (-49.78, 38.86) -0.01, (-0.03, 0.03) 0.24 (0.21, 0.28) 1.00 no 
1600 0.08 43 -0.01, (-0.03, 0.03) 4.62, (-5.59, 20.75) -7.98 (-51.29, 40.44) -0.00, (-0.03, 0.03) 0.23 (0.20, 0.27) 1.00 no 



1700 0.08 43 -0.01, (-0.03, 0.02) 4.70, (-4.88, 17.78) -9.67 (-53.32, 36.98) -0.01, (-0.03, 0.02) 0.22 (0.19, 0.26) 1.00 no 
1800 0.08 43 -0.01, (-0.03, 0.02) 5.36, (-4.89, 20.75) -12.04 (-55.40, 39.73) -0.01, (-0.03, 0.02) 0.22 (0.19, 0.25) 1.00 no 
1900 0.08 43 -0.01, (-0.03, 0.02) 4.19, (-4.65, 19.10) -9.98 (-55.93, 40.14) -0.01, (-0.03, 0.02) 0.21 (0.19, 0.24) 1.00 no 
2000 0.08 43 -0.01, (-0.03, 0.02) 3.86, (-4.76, 16.80) -10.47 (-58.77, 40.46) -0.01, (-0.03, 0.02) 0.21 (0.18, 0.24) 1.00 no 
2100 0.08 43 -0.01, (-0.03, 0.02) 4.34, (-4.39, 17.04) -14.75 (-61.60, 37.68) -0.01, (-0.03, 0.02) 0.20 (0.18, 0.23) 1.00 no 
2200 0.08 43 -0.01, (-0.03, 0.02) 3.81, (-4.39, 15.32) -10.29 (-60.64, 47.19) -0.00, (-0.03, 0.02) 0.20 (0.17, 0.22) 1.00 no 
2300 0.08 43 -0.01, (-0.03, 0.02) 3.97, (-3.96, 15.66) -13.67 (-66.91, 39.67) -0.01, (-0.03, 0.02) 0.19 (0.17, 0.22) 1.00 no 
2400 0.08 43 -0.01, (-0.03, 0.02) 3.57, (-4.75, 14.64) -11.85 (-64.28, 46.87) -0.00, (-0.03, 0.02) 0.19 (0.17, 0.21) 1.00 no 
2500 0.08 43 -0.01, (-0.03, 0.02) 2.97, (-4.48, 13.56) -11.60 (-67.65, 46.84) -0.00, (-0.03, 0.02) 0.18 (0.16, 0.21) 1.00 no 
2600 0.08 43 -0.01, (-0.03, 0.02) 3.48, (-3.70, 12.30) -15.97 (-66.83, 44.16) -0.01, (-0.03, 0.02) 0.18 (0.16, 0.21) 1.00 no 
2700 0.08 43 -0.00, (-0.03, 0.02) 2.58, (-5.09, 12.59) -8.92 (-65.01, 55.51) -0.00, (-0.02, 0.02) 0.18 (0.16, 0.20) 0.99 no 
2800 0.08 43 -0.01, (-0.03, 0.02) 3.19, (-4.47, 14.46) -14.18 (-70.89, 48.19) -0.01, (-0.03, 0.02) 0.17 (0.15, 0.19) 0.98 no 
2900 0.08 43 -0.01, (-0.03, 0.02) 2.82, (-4.05, 11.38) -13.56 (-70.86, 46.23) -0.00, (-0.02, 0.02) 0.17 (0.15, 0.19) 0.96 no 
3000 0.08 43 -0.01, (-0.03, 0.02) 2.59, (-3.95, 11.75) -12.63 (-77.32, 55.70) -0.00, (-0.04, 0.02) 0.17 (0.15, 0.19) 0.91 no 
3100 0.08 43 -0.01, (-0.03, 0.02) 2.67, (-4.22, 11.36) -13.99 (-74.71, 50.46) -0.00, (-0.02, 0.02) 0.16 (0.15, 0.18) 0.91 no 
3200 0.08 43 -0.01, (-0.03, 0.02) 2.42, (-3.86, 11.09) -12.78 (-72.98, 48.70) -0.00, (-0.02, 0.02) 0.16 (0.14, 0.18) 0.84 no 
3300 0.08 43 -0.01, (-0.03, 0.01) 2.75, (-3.53, 11.68) -17.05 (-76.50, 47.78) -0.01, (-0.02, 0.01) 0.16 (0.14, 0.18) 0.79 no 
3400 0.08 43 -0.01, (-0.03, 0.01) 2.29, (-3.60, 10.31) -14.90 (-75.36, 53.96) -0.00, (-0.02, 0.01) 0.16 (0.14, 0.17) 0.71 no 
3500 0.08 43 -0.01, (-0.03, 0.01) 2.55, (-4.12, 11.03) -18.15 (-78.58, 51.00) -0.01, (-0.02, 0.01) 0.15 (0.14, 0.17) 0.63 no 
3600 0.08 43 -0.01, (-0.03, 0.02) 2.33, (-3.43, 10.19) -16.56 (-80.80, 57.00) -0.00, (-0.02, 0.02) 0.15 (0.14, 0.17) 0.54 no 
3700 0.08 43 -0.00, (-0.02, 0.02) 2.14, (-3.73, 9.85) -14.32 (-81.42, 55.24) -0.00, (-0.02, 0.01) 0.15 (0.13, 0.16) 0.42 no 
3800 0.08 43 -0.01, (-0.02, 0.01) 2.10, (-3.73, 9.33) -15.58 (-79.81, 52.56) -0.00, (-0.02, 0.01) 0.15 (0.13, 0.16) 0.33 no 
3900 0.08 43 -0.01, (-0.02, 0.01) 1.94, (-4.04, 8.77) -14.41 (-80.78, 54.87) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.16) 0.25 no 
4000 0.08 43 -0.01, (-0.03, 0.01) 2.39, (-3.36, 9.73) -19.42 (-87.05, 50.46) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.16) 0.22 no 
4100 0.08 43 -0.01, (-0.02, 0.01) 1.91, (-3.33, 8.78) -16.27 (-84.71, 56.91) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.16) 0.17 no 
4200 0.08 43 -0.01, (-0.02, 0.01) 2.05, (-3.31, 9.73) -18.75 (-93.80, 54.63) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.13 no 
4220 0.08 43 -0.01, (-0.02, 0.01) 1.83, (-3.33, 8.36) -16.98 (-82.82, 57.28) 0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.11 yes-ish 
4230 0.08 43 -0.01, (-0.02, 0.02) 1.88, (-3.38, 8.84) -15.39 (-87.53, 65.58) 0.00, (-0.02, 0.02) 0.14 (0.13, 0.15) 0.08 yes 
4240 0.08 43 -0.01, (-0.02, 0.01) 2.29, (-3.36, 8.51) -21.31 (-92.40, 52.07) -0.01, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.08 yes 
4260 0.08 43 0.00, (-0.02, 0.02) 1.67, (-3.96, 8.20) -15.67 (-85.26, 62.21) 0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.10 yes 
4280 0.08 43 -0.01, (-0.02, 0.01) 2.06, (-2.99, 9.06) -20.57 (-89.29, 51.27) 0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.07 yes 
4300 0.08 43 -0.01, (-0.02, 0.01) 1.72, (-3.70, 7.72) -15.77 (-88.18, 56.97) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.08 yes 

          
Average abundance, Average detection             

100 0.18 43 -0.00, (-0.12, 0.17) 15.49, (-7.38, 31.57) 0.13 (-11.95, 16.33) 0.00, (-0.12, 0.16) 0.57 (0.36, 0.89) 1.00 no 
200 0.18 43 -0.00, (-0.11, 0.13) 12.14, (-7.20, 29.91) -3.59 (-21.45, 26.09) -0.02, (-0.11, 0.13) 0.41 (0.30, 0.56) 1.00 no 
300 0.18 43 -0.01, (-0.09, 0.10) 9.61, (-7.65, 28.24) -3.79 (-26.80, 29.27) -0.01, (-0.09, 0.10) 0.34 (0.27, 0.43) 1.00 no 
400 0.18 43 -0.01, (-0.09, 0.09) 7.97, (-6.91, 26.01) -5.38 (-33.14, 30.68) -0.01, (-0.08, 0.08) 0.30 (0.25, 0.36) 1.00 no 
500 0.18 43 -0.02, (-0.08, 0.07) 7.65, (-5.88, 25.75) -9.19 (-43.12, 31.31) -0.02, (-0.09, 0.06) 0.27 (0.23, 0.32) 1.00 no 
600 0.18 43 -0.02, (-0.08, 0.07) 6.20, (-6.02, 23.24) -9.85 (-46.30, 36.80) -0.02, (-0.08, 0.06) 0.25 (0.22, 0.29) 1.00 no 
700 0.18 43 -0.02, (-0.08, 0.05) 5.83, (-5.39, 22.42) -11.67 (-55.37, 34.89) -0.02, (-0.08, 0.05) 0.23 (0.20, 0.27) 1.00 no 
800 0.18 43 -0.01, (-0.07, 0.05) 4.98, (-4.78, 18.80) -11.43 (-57.57, 38.71) -0.01, (-0.07, 0.05) 0.22 (0.19, 0.25) 1.00 no 
900 0.18 43 -0.01, (-0.07, 0.05) 4.13, (-4.87, 17.00) -11.08 (-66.05, 43.72) -0.01, (-0.07, 0.05) 0.20 (0.18, 0.23) 1.00 no 

1000 0.18 43 -0.01, (-0.06, 0.05) 3.60, (-4.64, 14.11) -11.68 (-62.54, 44.27) -0.01, (-0.06, 0.04) 0.19 (0.17, 0.22) 1.00 no 
1100 0.18 43 -0.01, (-0.06, 0.04) 3.30, (-3.83, 13.09) -13.53 (-67.11, 40.76) -0.01, (-0.06, 0.04) 0.18 (0.16, 0.21) 1.00 no 



1200 0.18 43 -0.01, (-0.06, 0.05) 3.03, (-4.29, 12.80) -12.82 (-66.73, 51.98) -0.01, (-0.06, 0.04) 0.17 (0.15, 0.20) 0.98 no 
1300 0.18 43 -0.01, (-0.06, 0.04) 3.07, (-3.36, 11.84) -17.82 (-76.43, 44.09) -0.01, (-0.06, 0.03) 0.17 (0.15, 0.19) 0.95 no 
1400 0.18 43 -0.01, (-0.06, 0.05) 2.50, (-3.88, 10.64) -15.13 (-74.78, 57.71) -0.01, (-0.05, 0.04) 0.16 (0.14, 0.18) 0.84 no 
1500 0.18 43 -0.01, (-0.05, 0.04) 2.21, (-3.47, 8.91) -14.60 (-75.93, 54.73) -0.01, (-0.05, 0.04) 0.15 (0.14, 0.17) 0.67 no 
1600 0.18 43 -0.01, (-0.05, 0.04) 2.18, (-3.71, 9.73) -16.56 (-83.86, 54.38) -0.01, (-0.05, 0.03) 0.15 (0.14, 0.17) 0.46 no 
1700 0.18 43 -0.01, (-0.05, 0.04) 2.32, (-3.26, 9.01) -18.61 (-84.83, 56.63) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.16) 0.28 no 
1800 0.18 43 -0.01, (-0.05, 0.03) 2.03, (-3.37, 8.46) -18.09 (-92.63, 56.68) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.16) 0.13 no 
1860 0.18 43 -0.01, (-0.05, 0.04) 1.82, (-3.30, 8.48) -17.80 (-90.37, 60.18) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.15) 0.11 yes-ish 
1870 0.18 43 -0.01, (-0.05, 0.04) 1.99, (-3.09, 8.08) -17.12 (-83.53, 63.25) -0.01, (-0.04, 0.03) 0.14 (0.13, 0.15) 0.06 yes 
1880 0.18 43 -0.01, (-0.05, 0.03) 1.85, (-3.38, 8.26) -17.15 (-86.41, 52.00) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.15) 0.06 yes 
1900 0.18 43 -0.01, (-0.05, 0.04) 1.86, (-3.59, 7.59) -18.32 (-85.32, 60.60) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.06 yes 

          
High abundance, High detection               

100 0.31 58 -0.02, (-0.14, 0.14) 10.09, (-8.59, 22.55) -1.09 (-11.26, 12.84) -0.01, (-0.11, 0.13) 0.31 (0.21, 0.42) 1.00 no 
200 0.31 58 -0.02, (-0.11, 0.12) 9.78, (-7.40, 24.12) -3.68 (-19.30, 21.72) -0.02, (-0.10, 0.11) 0.24 (0.16, 0.30) 0.97 no 
300 0.31 58 -0.02, (-0.11, 0.11) 8.14, (-8.13, 23.82) -4.21 (-27.23, 30.31) -0.01, (-0.09, 0.10) 0.21 (0.14, 0.25) 0.93 no 
400 0.31 58 -0.02, (-0.11, 0.09) 7.40, (-7.80, 23.03) -5.78 (-34.83, 35.01) -0.01, (-0.09, 0.09) 0.18 (0.14, 0.22) 0.90 no 
500 0.31 58 -0.02, (-0.09, 0.08) 6.68, (-6.91, 21.36) -7.48 (-39.28, 37.20) -0.01, (-0.08, 0.07) 0.17 (0.13, 0.19) 0.87 no 
600 0.31 58 -0.02, (-0.10, 0.06) 6.90, (-7.22, 22.48) -11.47 (-51.76, 38.69) -0.02, (-0.09, 0.06) 0.16 (0.12, 0.18) 0.75 no 
700 0.31 58 -0.02, (-0.09, 0.06) 6.03, (-6.39, 19.76) -12.12 (-54.45, 42.24) -0.02, (-0.08, 0.06) 0.15 (0.13, 0.16) 0.41 no 
780 0.31 58 -0.02, (-0.09, 0.06) 6.15, (-6.42, 21.11) -14.02 (-61.94, 47.12) -0.02, (-0.08, 0.06) 0.14 (0.12, 0.15) 0.13 no 
790 0.31 58 -0.02, (-0.08, 0.06) 5.72, (-5.60, 18.78) -13.11 (-58.29, 40.61) -0.02, (-0.07, 0.05) 0.14 (0.12, 0.15) 0.11 yes-ish 
800 0.31 58 -0.02, (-0.09, 0.05) 5.90, (-5.70, 20.32) -15.31 (-63.06, 38.67) -0.02, (-0.08, 0.05) 0.14 (0.12, 0.15) 0.07 yes 

          
Average abundance, High detection             

100 0.18 58 0.00, (-0.10, 0.15) 7.71, (-13.26, 21.42) 0.83 (-7.59, 13.95) 0.01, (-0.08, 0.14) 0.42 (0.26, 0.62) 1.00 no 
200 0.18 58 -0.01, (-0.08, 0.09) 10.25, (-8.05, 22.96) -2.08 (-13.86, 14.53) -0.01, (-0.07, 0.07) 0.29 (0.20, 0.40) 1.00 no 
300 0.18 58 -0.01, (-0.07, 0.09) 9.23, (-10.02, 24.04) -2.12 (-18.90, 23.19) -0.01, (-0.06, 0.08) 0.25 (0.17, 0.32) 0.98 no 
400 0.18 58 -0.01, (-0.06, 0.08) 8.15, (-9.92, 23.51) -2.03 (-23.80, 28.60) -0.01, (-0.06, 0.07) 0.23 (0.16, 0.28) 0.97 no 
500 0.18 58 -0.01, (-0.06, 0.06) 7.94, (-7.61, 22.71) -4.11 (-27.47, 27.83) -0.01, (-0.05, 0.06) 0.21 (0.15, 0.25) 0.95 no 
600 0.18 58 -0.01, (-0.06, 0.06) 7.92, (-9.48, 22.36) -6.11 (-33.32, 34.50) -0.01, (-0.06, 0.06) 0.19 (0.14, 0.23) 0.93 no 
700 0.18 58 -0.01, (-0.06, 0.06) 7.28, (-7.67, 23.09) -6.49 (-35.11, 34.33) -0.01, (-0.05, 0.05) 0.18 (0.13, 0.21) 0.89 no 
800 0.18 58 -0.01, (-0.06, 0.06) 7.65, (-9.07, 23.18) -7.84 (-42.33, 39.52) -0.01, (-0.05, 0.05) 0.17 (0.13, 0.20) 0.83 no 
900 0.18 58 -0.01, (-0.05, 0.05) 6.39, (-8.22, 22.16) -7.78 (-43.56, 44.66) -0.01, (-0.05, 0.05) 0.16 (0.13, 0.19) 0.85 no 

1000 0.18 58 -0.01, (-0.05, 0.04) 6.83, (-6.72, 21.75) -10.79 (-49.12, 38.50) -0.01, (-0.05, 0.04) 0.16 (0.13, 0.18) 0.75 no 
1100 0.18 58 -0.01, (-0.05, 0.05) 6.13, (-7.44, 20.08) -10.78 (-49.51, 43.62) -0.01, (-0.05, 0.04) 0.15 (0.13, 0.17) 0.61 no 
1200 0.18 58 -0.01, (-0.05, 0.04) 6.50, (-5.82, 20.76) -12.26 (-53.03, 37.08) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.16) 0.36 no 
1300 0.18 58 -0.01, (-0.05, 0.04) 5.12, (-6.20, 19.93) -10.41 (-61.06, 45.39) -0.01, (-0.05, 0.03) 0.14 (0.12, 0.16) 0.17 no 
1340 0.18 58 -0.01, (-0.05, 0.03) 4.95, (-6.75, 18.81) -10.71 (-57.01, 38.66) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.11 yes-ish 
1350 0.18 58 -0.01, (-0.05, 0.04) 5.38, (-6.36, 19.01) -12.58 (-58.27, 40.85) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.12 no 
1360 0.18 58 -0.01, (-0.05, 0.04) 5.05, (-6.55, 19.75) -11.90 (-63.80, 44.26) -0.01, (-0.05, 0.03) 0.14 (0.12, 0.15) 0.08 yes 
1380 0.18 58 -0.01, (-0.05, 0.03) 5.15, (-6.16, 19.62) -13.08 (-61.06, 41.45) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.07 yes 
1400 0.18 58 -0.01, (-0.05, 0.04) 4.36, (-7.56, 18.45) -9.17 (-58.23, 50.97) -0.01, (-0.04, 0.04) 0.14 (0.12, 0.15) 0.06 yes 

          
Low abundance, high detection               



100 0.08 58 0.02, (-0.05, 0.13) 5.48, (-20.85, 19.54) 2.59 (-4.04, 12.89) 0.03, (-0.04, 0.13) 1.21 (0.36, 1.49) 1.00 no 
200 0.08 58 0.00, (-0.04, 0.07) 7.98, (-13.24, 21.30) 0.72 (-7.48, 13.90) 0.00, (-0.04, 0.07) 0.58 (0.27, 0.67) 1.00 no 
300 0.08 58 0.00, (-0.04, 0.06) 8.30, (-11.25, 21.53) 0.71 (-9.00, 15.79) 0.00, (-0.03, 0.05) 0.36 (0.23, 0.52) 1.00 no 
400 0.08 58 0.00, (-0.04, 0.05) 8.19, (-11.23, 22.25) 0.00 (-11.74, 17.47) 0.00, (-0.03, 0.04) 0.32 (0.21, 0.44) 1.00 no 
500 0.08 58 0.00, (-0.03, 0.04) 8.66, (-10.65, 22.78) -0.33 (-11.98, 19.26) 0.00, (-0.02, 0.04) 0.29 (0.20, 0.39) 1.00 no 
600 0.08 58 0.00, (-0.03, 0.03) 9.75, (-8.83, 23.85) -2.22 (-15.78, 19.92) 0.00, (-0.03, 0.03) 0.26 (0.17, 0.34) 0.99 no 
700 0.08 58 -0.01, (-0.03, 0.03) 9.31, (-8.07, 23.65) -2.32 (-16.86, 18.75) 0.00, (-0.02, 0.03) 0.25 (0.17, 0.32) 0.99 no 
800 0.08 58 0.00, (-0.03, 0.03) 8.95, (-7.86, 23.35) -2.93 (-20.13, 21.50) 0.00, (-0.03, 0.03) 0.24 (0.16, 0.30) 0.97 no 
900 0.08 58 0.00, (-0.03, 0.03) 8.83, (-7.93, 24.28) -3.17 (-23.30, 23.45) 0.00, (-0.03, 0.03) 0.23 (0.15, 0.28) 0.95 no 

1000 0.08 58 -0.01, (-0.03, 0.02) 9.43, (-7.93, 23.04) -5.59 (-25.15, 25.45) -0.01, (-0.03, 0.03) 0.22 (0.15, 0.27) 0.95 no 
1100 0.08 58 -0.01, (-0.03, 0.03) 8.64, (-8.63, 24.51) -4.62 (-26.64, 23.74) 0.00, (-0.02, 0.02) 0.21 (0.14, 0.25) 0.93 no 
1200 0.08 58 0.00, (-0.03, 0.03) 7.57, (-9.11, 22.10) -4.06 (-27.77, 28.33) 0.00, (-0.02, 0.02) 0.20 (0.15, 0.25) 0.95 no 
1300 0.08 58 0.00, (-0.03, 0.02) 7.59, (-8.74, 23.67) -4.74 (-30.13, 28.41) 0.00, (-0.02, 0.02) 0.20 (0.14, 0.23) 0.92 no 
1400 0.08 58 -0.01, (-0.03, 0.02) 7.48, (-8.38, 22.72) -5.41 (-30.14, 29.74) 0.00, (-0.02, 0.02) 0.19 (0.14, 0.23) 0.93 no 
1500 0.08 58 -0.01, (-0.03, 0.02) 7.60, (-7.38, 21.62) -6.25 (-32.28, 27.84) 0.00, (-0.02, 0.02) 0.19 (0.14, 0.22) 0.92 no 
1600 0.08 58 -0.01, (-0.03, 0.02) 7.30, (-8.74, 23.07) -5.39 (-35.20, 37.24) 0.00, (-0.02, 0.02) 0.18 (0.14, 0.21) 0.91 no 
1700 0.08 58 -0.01, (-0.03, 0.02) 8.12, (-6.56, 23.34) -9.18 (-38.67, 30.63) -0.01, (-0.02, 0.02) 0.18 (0.13, 0.21) 0.86 no 
1800 0.08 58 -0.01, (-0.03, 0.02) 7.10, (-7.04, 21.88) -7.74 (-37.97, 32.14) 0.00, (-0.02, 0.02) 0.17 (0.14, 0.20) 0.89 no 
1900 0.08 58 -0.01, (-0.03, 0.02) 7.06, (-7.84, 22.71) -7.80 (-42.93, 36.47) 0.00, (-0.02, 0.02) 0.17 (0.13, 0.19) 0.84 no 
2000 0.08 58 -0.01, (-0.03, 0.02) 7.16, (-7.82, 21.61) -8.67 (-42.97, 35.06) 0.00, (-0.02, 0.02) 0.17 (0.13, 0.19) 0.83 no 
2100 0.08 58 -0.01, (-0.03, 0.02) 7.29, (-6.62, 23.00) -10.84 (-45.52, 35.68) -0.01, (-0.02, 0.02) 0.16 (0.12, 0.19) 0.81 no 
2200 0.08 58 -0.01, (-0.02, 0.02) 6.36, (-8.34, 22.27) -8.32 (-46.97, 38.45) 0.00, (-0.02, 0.02) 0.16 (0.13, 0.18) 0.80 no 
2300 0.08 58 -0.01, (-0.03, 0.02) 7.07, (-6.73, 23.50) -11.29 (-51.19, 40.76) 0.00, (-0.02, 0.02) 0.16 (0.12, 0.18) 0.75 no 
2400 0.08 58 -0.01, (-0.02, 0.02) 5.93, (-7.91, 20.79) -8.74 (-51.42, 42.91) 0.00, (-0.02, 0.02) 0.15 (0.13, 0.17) 0.72 no 
2500 0.08 58 -0.01, (-0.03, 0.02) 6.02, (-6.98, 21.08) -10.76 (-51.31, 42.65) 0.00, (-0.02, 0.02) 0.15 (0.13, 0.17) 0.65 no 
2600 0.08 58 -0.01, (-0.02, 0.02) 6.11, (-6.88, 20.47) -12.31 (-53.13, 36.12) 0.00, (-0.02, 0.01) 0.15 (0.13, 0.17) 0.56 no 
2700 0.08 58 -0.01, (-0.02, 0.01) 6.55, (-6.84, 22.10) -13.41 (-56.32, 40.97) 0.00, (-0.02, 0.02) 0.15 (0.12, 0.16) 0.45 no 
2800 0.08 58 -0.01, (-0.02, 0.02) 5.48, (-6.41, 18.93) -10.59 (-52.51, 43.38) 0.00, (-0.02, 0.02) 0.15 (0.13, 0.16) 0.32 no 
2900 0.08 58 -0.01, (-0.02, 0.01) 5.76, (-6.24, 21.57) -12.78 (-58.46, 41.17) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.16) 0.23 no 
3000 0.08 58 -0.01, (-0.02, 0.02) 5.47, (-6.33, 18.87) -12.03 (-57.94, 42.01) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.16) 0.20 no 
3100 0.08 58 -0.01, (-0.02, 0.01) 5.73, (-4.96, 19.82) -14.70 (-62.94, 39.28) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.11 yes-ish 
3110 0.08 58 0.00, (-0.02, 0.01) 5.16, (-5.92, 19.60) -11.62 (-60.84, 43.04) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.09 yes 
3120 0.08 58 -0.01, (-0.02, 0.01) 5.25, (-6.20, 21.17) -11.99 (-61.64, 39.36) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.10 yes 
3140 0.08 58 -0.01, (-0.02, 0.01) 5.28, (-6.70, 19.55) -13.07 (-59.33, 46.66) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.08 yes 
3160 0.08 58 -0.01, (-0.02, 0.01) 5.08, (-6.43, 20.59) -11.48 (-61.55, 50.74) 0.00, (-0.02, 0.02) 0.14 (0.12, 0.15) 0.08 yes 
3180 0.08 58 -0.01, (-0.02, 0.01) 5.39, (-6.59, 20.17) -12.14 (-58.57, 48.50) 0.00, (-0.02, 0.02) 0.14 (0.12, 0.15) 0.07 yes 
3200 0.08 58 -0.01, (-0.02, 0.02) 5.33, (-6.77, 20.70) -13.21 (-65.15, 49.01) 0.00, (-0.02, 0.02) 0.14 (0.12, 0.15) 0.07 yes 

 

  



Table S10. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 
data analyzed hierarchical distance sampling models for line transects with a length of 2,681 (average transect length from 2020 and 
2021 surveys). Mean (95% credible interval) for bias and coefficient of variation from 500 simulation runs for each suite of 
parameters. Different scenarios include combinations of high, average, and low abundance paired with either average or high 
detection. R = number of survey sites, λ = mean abundance per site, sigma = sigma for calculating the half-normal detection function; 
CV = coefficient of variation for total population size (Total N) and N.site = estimated number of dusky grouse per survey site. 

Simulation Parameters 

Bias in λ Bias in sigma Bias in Total N Bias in N.site CV Total N Probability CV 
 N.total > 0.15 

Protocol meets 
 Management 
 Requirements R λ sigma 

High abundance, Average detection             
20 5.54 42 -0.09 (-1.65, 1.58) 3.59 (-6.06, 17.96) -2.54 (-29.47, 28.67) -0.13 (-1.47, 1.43) 0.14 (0.13, 0.16) 0.27 no 
25 5.54 42 -0.08 (-1.48, 1.26) 2.90 (-5.32, 13.94) -2.34 (-31.01, 28.10) -0.09 (-1.24, 1.12) 0.13 (0.12, 0.14) 0.01 yes 
30 5.54 42 -0.05 (-1.27, 1.28) 1.43 (-5.66, 9.53) -1.79 (-31.05, 28.58) -0.06 (-1.03, 0.95) 0.12 (0.11, 0.13) 0.00 yes 
40 5.54 42 -0.06 (-1.16, 1.14) 1.25 (-5.16, 8.51) -2.89 (-36.80, 37.46) -0.07 (-0.92, 0.94) 0.10 (0.09, 0.11) 0.00 yes 
60 5.54 42 -0.08 (-0.85, 0.80) 1.16 (-3.70, 6.31) -4.37 (-45.46, 42.31) -0.07 (-0.76, 0.71) 0.08 (0.08, 0.09) 0.00 yes 
80 5.54 42 -0.04 (-0.77, 0.73) 0.65 (-3.53, 5.19) -2.71 (-57.15, 49.50) -0.03 (-0.71, 0.62) 0.07 (0.07, 0.07) 0.00 yes 

100 5.54 42 -0.01 (-0.66, 0.67) 0.55 (-2.85, 4.62) -1.94 (-55.14, 59.02) -0.02 (-0.55, 0.59) 0.06 (0.06, 0.07) 0.00 yes 

          
Average abundance, Average detection             
20 3.22 42 -0.10 (-1.15, 1.24) 6.16 (-6.66, 23.52) -2.16 (-19.42, 18.89) -0.11 (-0.97, 0.94) 0.19 (0.16, 0.22) 0.99 no 
30 3.22 42 -0.11 (-1.01, 0.98) 4.26 (-6.44, 19.45) -2.64 (-25.97, 21.85) -0.09 (-0.87, 0.73) 0.16 (0.14, 0.18) 0.71 no 
35 3.22 42 -0.07 (-0.86, 0.85) 3.29 (-5.27, 15.88) -2.67 (-26.82, 23.36) -0.08 (-0.77, 0.67) 0.14 (0.13, 0.16) 0.29 no 
40 3.22 42 -0.06 (-0.84, 0.81) 3.23 (-5.31, 15.81) -3.31 (-30.55, 22.27) -0.08 (-0.76, 0.56) 0.13 (0.12, 0.15) 0.04 yes 
60 3.22 42 -0.04 (-0.72, 0.65) 1.63 (-4.63, 9.25) -2.69 (-35.61, 33.99) -0.04 (-0.59, 0.57) 0.11 (0.10, 0.12) 0.00 yes 
80 3.22 42 -0.05 (-0.62, 0.53) 1.45 (-4.31, 8.60) -3.22 (-40.71, 38.56) -0.04 (-0.51, 0.48) 0.09 (0.09, 0.10) 0.00 yes 

100 3.22 42 -0.03 (-0.51, 0.46) 1.01 (-3.88, 6.17) -3.13 (-42.30, 40.99) -0.03 (-0.42, 0.41) 0.08 (0.08, 0.09) 0.00 yes 

          
Low abundance, Average detection             
100 1.43 42 -0.01 (-0.35, 0.34) 2.60 (-5.83, 12.97) -1.81 (-32.22, 30.12) -0.02 (-0.32, 0.30) 0.13 (0.12, 0.14) 0.01 yes 
80 1.43 42 -0.03 (-0.41, 0.39) 3.41 (-6.44, 16.49) -2.76 (-30.47, 24.64) -0.03 (-0.38, 0.31) 0.14 (0.13, 0.16) 0.24 no 
90 1.43 42 -0.03 (-0.39, 0.35) 2.58 (-5.32, 14.65) -2.58 (-29.13, 23.93) -0.03 (-0.32, 0.27) 0.13 (0.12, 0.15) 0.06 yes 
85 1.43 42 -0.03 (-0.36, 0.38) 2.92 (-5.81, 13.87) -2.62 (-26.72, 23.79) -0.03 (-0.31, 0.28) 0.14 (0.12, 0.15) 0.11 yes-ish 

          
High abundance, High detection             
10 5.54 51 -0.25 (-1.97, 1.78) 9.19 (-8.45, 26.34) -2.64 (-15.51, 14.34) -0.26 (-1.55, 1.43) 0.18 (0.13, 0.22) 0.84 no 



15 5.54 51 -0.10 (-1.56, 1.83) 6.81 (-9.23, 23.51) -1.79 (-19.00, 21.42) -0.12 (-1.27, 1.43) 0.15 (0.12, 0.17) 0.45 no 
20 5.54 51 -0.14 (-1.40, 1.45) 5.67 (-7.24, 21.52) -3.04 (-24.75, 20.15) -0.15 (-1.24, 1.01) 0.13 (0.11, 0.15) 0.04 yes 
40 5.54 51 -0.13 (-1.23, 0.95) 3.45 (-5.73, 15.85) -4.63 (-39.53, 29.92) -0.12 (-0.99, 0.75) 0.09 (0.09, 0.10) 0.00 yes 
60 5.54 51 -0.07 (-0.85, 0.81) 1.93 (-5.28, 10.23) -4.25 (-48.17, 41.12) -0.07 (-0.80, 0.69) 0.08 (0.07, 0.08) 0.00 yes 
80 5.54 51 -0.05 (-0.71, 0.65) 1.03 (-4.26, 7.88) -3.45 (-47.22, 37.54) -0.04 (-0.59, 0.47) 0.07 (0.06, 0.07) 0.00 yes 

100 5.54 51 -0.01 (-0.65, 0.71) 0.96 (-4.28, 6.81) -2.32 (-52.68, 47.03) -0.02 (-0.53, 0.47) 0.06 (0.06, 0.06) 0.00 yes 

          
Average abundance, High detection             
20 3.22 51 -0.14 (-1.08, 1.04) 9.42 (-8.57, 26.65) -3.06 (-18.03, 16.03) -0.15 (-0.90, 0.80) 0.16 (0.12, 0.20) 0.73 no 
30 3.22 51 -0.15 (-0.93, 0.72) 7.63 (-5.95, 24.20) -4.65 (-22.60, 18.41) -0.15 (-0.75, 0.61) 0.14 (0.11, 0.16) 0.20 no 
35 3.22 51 -0.12 (-0.92, 0.79) 6.28 (-6.85, 23.29) -3.94 (-24.98, 19.96) -0.11 (-0.71, 0.57) 0.13 (0.11, 0.15) 0.02 yes 
40 3.22 51 -0.10 (-0.85, 0.73) 5.18 (-7.40, 21.19) -4.05 (-27.98, 23.58) -0.10 (-0.70, 0.59) 0.12 (0.11, 0.14) 0.00 yes 
60 3.22 51 -0.07 (-0.76, 0.61) 3.47 (-6.39, 16.87) -3.40 (-35.24, 28.49) -0.06 (-0.59, 0.47) 0.10 (0.0, 0.11) 0.00 yes 
80 3.22 51 -0.06 (-0.62, 0.52) 2.52 (-5.84, 13.79) -4.22 (-39.76, 32.49) -0.05 (-0.50, 0.41) 0.09 (0.08, 0.09) 0.00 yes 

100 3.22 51 -0.04 (-0.56, 0.46) 2.12 (-5.06, 11.52) -4.91 (-45.84, 37.84) -0.05 (-0.46, 0.38) 0.08 (0.07, 0.08) 0.00 yes 

          
Low abundance, High detection             
60 1.43 51 -0.07 (-0.44, 0.42) 7.36 (-7.83, 24.88) -3.36 (-21.23, 19.94) -0.06 (-0.35, 0.33) 0.15 (0.12, 0.17) 0.45 no 
65 1.43 51 -0.03 (-0.41, 0.42) 6.42 (-7.71, 22.17) -1.66 (-20.76, 21.16) -0.03 (-0.32, 0.33) 0.14 (0.12, 0.16) 0.25 no 
70 1.43 51 -0.06 (-0.39, 0.32) 7.66 (-7.27, 24.01) -4.18 (-21.92, 18.97) -0.06 (-0.34, 0.27) 0.14 (0.11, 0.16) 0.10 yes 
80 1.43 51 -0.04 (-0.37, 0.40) 6.17 (-7.75, 20.89) -3.14 (-23.48, 23.70) -0.04 (-0.29, 0.30) 0.13 (0.11, 0.14) 0.01 yes 

100 1.43 51 -0.03 (-0.36, 0.32) 4.63 (-7.44, 20.77) -3.65 (-30.02, 27.41) -0.04 (-0.30, 0.27) 0.12 (0.10, 0.13) 0.00 yes 
  



Table S11. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 
data analyzed hierarchical distance sampling models for line transects with a length of 5,000m. Mean (95% credible interval) for bias 
and coefficient of variation from 500 simulation runs for each suite of parameters. Different scenarios include combinations of high, 
average, and low abundance paired with either average or high detection. R = number of survey sites, λ = mean abundance per site, 
sigma = sigma for calculating the half-normal detection function; CV = coefficient of variation for total population size (Total N) and 
N.site = estimated number of dusky grouse per survey site. 

Simulation Parameters 

Bias in λ Bias in sigma Bias in Total N Bias in N.site CV Total N 
Probability 

CV 
 N.total > 0.15 

Protocol meets 
 Management 
 Requirements R λ sigma 

High abundance, Average detection             

10 10.33 42 -0.36 (-3.42, 2.95) 4.59 (-5.73, 19.76) -3.08 (-29.41, 24.03) -0.31 (-2.94, 2.40) 0.15 (0.13, 0.17) 0.47 no 

15 10.33 42 -0.27 (-2.54, 2.14) 2.58 (-4.90, 11.82) -3.47 (-33.21, 27.46) -0.23 (-2.21, 1.83) 0.12 (0.11, 0.14) 0.00 yes 

20 10.33 42 -0.13 (-2.33, 2.03) 1.78 (-5.26, 9.68) -2.99 (-40.46, 37.18) -0.15 (-2.02, 1.86) 0.10 (0.10, 0.12) 0.00 yes 

40 10.33 42 -0.05 (-1.51, 1.48) 0.74 (-3.61, 5.70) -1.29 (-51.31, 44.90) -0.03 (-1.28, 1.12) 0.07 (0.07, 0.08) 0.00 yes 

60 10.33 42 -0.09 (-1.27, 1.20) 0.67 (-2.43, 4.70) -5.92 (-69.32, 56.28) -0.10 (-1.16, 0.94) 0.06 (0.06, 0.06) 0.00 yes 

80 10.33 42 -0.04 (-1.05, 1.04) 0.47 (-2.39, 3.98) -4.56 (-73.02, 62.47) -0.06 (-0.91, 0.78) 0.05 (0.05, 0.05) 0.00 yes 

100 10.33 42 -0.08 (-1.01, 0.99) 0.40 (-2.34, 3.01) -8.19 (-84.39, 69.41) -0.08 (-0.84, 0.69) 0.05 (0.04, 0.05) 0.00 yes 

          
Average abundance, Average detection             

20 6 42 -0.10 (-1.72, 1.56) 3.06 (-5.41, 15.58) -2.51 (-28.58, 25.43) -0.13 (-1.43, 1.27) 0.14 (0.12, 0.16) 0.14 no 

25 6 42 -0.08 (-1.53, 1.46) 2.62 (-5.81, 12.23) -2.01 (-30.41, 29.61) -0.08 (-1.22, 1.18) 0.12 (0.11, 0.14) 0.00 yes 

30 6 42 -0.05 (-1.42, 1.33) 2.00 (-4.49, 11.27) -2.08 (-36.65, 30.71) -0.07 (-1.22, 1.02) 0.11 (0.10, 0.12) 0.00 yes 

40 6 42 -0.04 (-1.04, 1.13) 1.19 (-4.56, 7.65) -1.72 (-37.93, 34.09) -0.04 (-0.95, 0.85) 0.10 (0.09, 0.10) 0.00 yes 

60 6 42 -0.05 (-1.08, 0.78) 0.99 (-3.25, 6.33) -3.26 (-51.41, 43.90) -0.05 (-0.86, 0.73) 0.08 (0.07, 0.08) 0.00 yes 

80 6 42 -0.02 (-0.79, 0.80) 0.51 (-3.34, 4.95) -0.82 (-51.25, 48.55) -0.01 (-0.64, 0.61) 0.07 (0.06, 0.07) 0.00 yes 

100 6 42 -0.04 (-0.79, 0.70) 0.54 (-2.81, 4.36) -4.23 (-62.13, 52.88) -0.04 (-0.62, 0.53) 0.06 (0.06, 0.06) 0.00 yes 

          
Low abundance, Average detection             

40 2.67 42 -0.08 (-0.84, 0.73) 3.86 (-5.99, 16.94) -3.09 (-27.32, 23.42) -0.08 (-0.68, 0.59) 0.15 (0.13, 0.17) 0.42 no 

45 2.67 42 -0.08 (-0.76, 0.67) 3.68 (-4.89, 15.58) -3.60 (-28.97, 25.27) -0.08 (-0.64, 0.56) 0.14 (0.12, 0.16) 0.14 no 

50 2.67 42 -0.04 (-0.77, 0.68) 2.52 (-5.73, 14.62) -2.34 (-31.02, 29.58) -0.05 (-0.62, 0.59) 0.13 (0.12, 0.15) 0.05 yes 



60 2.67 42 -0.06 (-0.65, 0.60) 2.17 (-5.55, 12.34) -3.22 (-35.98, 29.53) -0.05 (-0.60, 0.49) 0.12 (0.11, 0.13) 0.00 yes 

80 2.67 42 -0.05 (-0.59, 0.55) 1.95 (-4.65, 9.91) -3.37 (-37.17, 35.92) -0.04 (-0.46, 0.45) 0.10 (0.09, 0.11) 0.00 yes 

100 2.67 42 -0.01 (-0.47, 0.46) 1.14 (-4.19, 6.95) -1.38 (-36.59, 37.71) -0.01 (-0.37, 0.38) 0.09 (0.09, 0.10) 0.00 yes 

          
High abundance, High detection               

10 10.33 51 -0.37 (-2.89, 2.60) 6.23 (-7.93, 22.81) -2.88 (-23.44, 22.58) -0.29 (-2.34, 2.26) 0.14 (0.11, 0.15) 0.11 yes-ish 

15 10.33 51 -0.23 (-2.48, 2.17) 4.32 (-7.13, 18.33) -3.40 (-30.83, 24.10) -0.23 (-2.06, 1.61) 0.11 (0.10, 0.12) 0.00 yes 

20 10.33 51 -0.19 (-2.25, 1.91) 2.98 (-6.97, 16.01) -2.94 (-37.56, 32.09) -0.15 (-1.88, 1.60) 0.10 (0.09, 0.11) 0.00 yes 

40 10.33 51 -0.18 (-1.49, 1.19) 1.66 (-4.07, 9.92) -7.09 (-50.55, 39.84) -0.18 (-1.26, 1.00) 0.07 (0.06, 0.07) 0.00 yes 

60 10.33 51 -0.04 (-1.25, 1.07) 0.73 (-3.92, 6.40) -2.17 (-61.66, 56.14) -0.04 (-1.03, 0.94) 0.06 (0.05, 0.06) 0.00 yes 

80 10.33 51 -0.07 (-1.10, 0.93) 1.02 (-3.48, 6.07) -6.89 (-76.07, 53.61) -0.09 (-0.95, 0.67) 0.05 (0.05, 0.05) 0.00 yes 

100 10.33 51 -0.04 (-0.99, 0.85) 0.60 (-3.08, 5.30) -2.65 (-77.98, 72.19) -0.03 (-0.78, 0.72) 0.04 (0.04, 0.04) 0.00 yes 

          
Average abundance, High detection             

10 6 51 -0.24 (-2.08, 1.90) 9.10 (-8.94, 26.79) -2.25 (-16.35, 16.15) -0.22 (-1.63, 1.61) 0.17 (0.13, 0.21) 0.81 no 

15 6 51 -0.22 (-1.77, 1.44) 7.12 (-7.50, 24.09) -3.36 (-21.34, 17.06) -0.22 (-1.42, 1.14) 0.14 (0.12, 0.17) 0.34 no 

20 6 51 -0.16 (-1.57, 1.43) 6.00 (-6.41, 22.23) -3.68 (-26.62, 21.67) -0.18 (-1.33, 1.08) 0.13 (0.11, 0.14) 0.01 yes 

40 6 51 -0.06 (-1.15, 1.17) 2.34 (-6.25, 13.91) -2.44 (-39.09, 34.63) -0.06 (-0.98, 0.87) 0.09 (0.08, 0.10) 0.00 yes 

60 6 51 -0.07 (-0.94, 0.79) 1.90 (-4.58, 10.08) -5.19 (-49.50, 38.98) -0.09 (-0.82, 0.65) 0.07 (0.07, 0.08) 0.00 yes 

80 6 51 -0.04 (-0.78, 0.80) 1.09 (-4.84, 7.94) -1.46 (-54.12, 49.80) -0.02 (-0.68, 0.62) 0.06 (0.06, 0.07) 0.00 yes 

100 6 51 -0.06 (-0.72, 0.57) 0.98 (-4.15, 6.88) -3.24 (-56.26, 51.08) -0.03 (-0.56, 0.51) 0.06 (0.05, 0.06) 0.00 yes 

          
Low abundance, High detection               

20 2.67 51 -0.12 (-0.99, 0.93) 9.29 (-8.90, 26.61) -2.43 (-14.89, 14.82) -0.12 (-0.74, 0.74) 0.18 (0.13, 0.22) 0.84 no 

30 2.67 51 -0.07 (-0.78, 0.86) 7.28 (-9.63, 24.44) -2.46 (-20.13, 20.37) -0.08 (-0.67, 0.68) 0.15 (0.12, 0.17) 0.54 no 

35 2.67 51 -0.08 (-0.78, 0.75) 6.12 (-8.26, 22.59) -2.56 (-22.43, 20.67) -0.07 (-0.64, 0.59) 0.14 (0.12, 0.16) 0.23 no 

40 2.67 51 -0.04 (-0.69, 0.74) 5.24 (-8.42, 22.15) -1.84 (-23.56, 22.83) -0.05 (-0.59, 0.57) 0.13 (0.11, 0.15) 0.07 yes 

60 2.67 51 -0.05 (-0.58, 0.53) 4.27 (-6.23, 18.55) -2.89 (-28.54, 25.77) -0.05 (-0.48, 0.43) 0.11 (0.10, 0.12) 0.00 yes 

80 2.67 51 -0.03 (-0.52, 0.50) 2.86 (-5.52, 15.18) -3.57 (-35.98, 30.26) -0.04 (-0.45, 0.38) 0.10 (0.09, 0.10) 0.00 yes 

100 2.67 51 -0.04 (-0.48, 0.47) 2.78 (-5.09, 13.67) -4.16 (-39.69, 33.94) -0.04 (-0.40, 0.34) 0.09 (0.08, 0.09) 0.00 yes 
 



S12. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for point counts using N-mixture models in a population in which 
average local abundance declined with a hypothetical covariate X and probability of detection 
was kept constant.   

# Function for simulating and analyzing data using a N-mixture model for point counts in which local abundance 
declined strongly (or weakly), B = -1, (or B = -0.5) with standardized hypothetical site covariate. Probability of 
detection is kept constant. 
 
# Code adapted from:  
#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of distribution, abundance, and 
species richness in R and BUGS. Academic Press, London, United Kingdom. 
# Kery, M. and M. Schaub. 2012. Bayesian population analysis using WinBUGS. A hierarchical perspective. 
Elsevier Inc. 
 
# S = number of spatial reps/ number of sites 
# V = number of visits at each site (temporal reps) 
# lambda.orig = average local abundance per transect estimated from the 2020 & 2021 data 
# alpha (log(lambda.orig)) & alpha1 = intercept and slope of log-linear regression relating abundance to site 
covariate X 
# xmin & xmas = lower and upper limits of distribution when generating covariate X 
# prob = probability of detection 
# num.sim = number of simulations 
 
#Simulate Data - Nmixture model. Parameters estimated: lambda and probability of detection 
Sim.Nmix.fn.Lam.Cov <- function(S=S, V=V, lambda.orig = lambda.orig, alpha1.lam = alpha1.lam, xmin = xmin, 
xmax = xmax, prob = prob, num.sim = num.sim) { 
  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 
   
  #*************** 
  # Define Bayesian Model  
  #*************** 
   
  # Specify model in Bugs language, but going to use JagsUI/jags 
  sink("Nmix.Lam.Cov.txt") 
  cat(" 
    model { 
     
    # Priors 
       alpha ~ dunif(-10,10) #vague prior for alpha (intercept for log-linear regression relating abundance to site 
covariate X) 
       alpha1 ~ dunif(-10,10) #vague prior for alpha1 (slope for log-linear regression relating abundance to site 
covariate X) 
       p ~ dunif(0, 1) #vague prior for probability of detection 
     
    # Likelihood 
       # Biological model for true abundance 
          for (i in 1:S) { 
            N[i] ~ dpois(lambda[i]) #describes spatial variation in abundance (N) 
            log(lambda[i]) <- alpha + alpha1 * X[i] #relationship between local abundance per site and site covariate X 
        # Observation model for replicated counts 
           for (j in 1:V) { 
             y[i,j] ~ dbin(p, N[i]) #count (observation) for each visit at each site 
           } # j 
         } # i 



         
        #Derived parameters 
        Ntotal <- sum(N[]) #total of abundance at each site (N) 
    } 
    ",fill = TRUE) 
  sink() 
   
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
   
  num.sim <- num.sim 
   
  # Create empty vectors to store results from replicated datasets 
  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 
  sd.bias.Nsite <- vector("list",num.sim) 
  baye.pvalue.Nsite <- vector("list",num.sim)  
   
  m.bias.p <- vector("list",num.sim) #bias in probability of detection 
  sd.bias.p <- vector("list",num.sim) 
  baye.pvalue.p <- vector("list",num.sim) 
   
  m.bias.Ntot <- vector("list",num.sim) #bias in total N 
  sd.bias.Ntot <- vector("list",num.sim) 
  baye.pvalue.Ntot <- vector("list",num.sim) 
   
  m.bias.alpha.lam <- vector("list",num.sim)  #bias in alpha (intercept for model for lambda) 
  sd.bias.alpha.lam <- vector("list",num.sim) 
  baye.pvalue.alpha.lam <- vector("list",num.sim) 
   
  m.bias.alpha1.lam <- vector("list",num.sim)  #bias in alpha1 (slope for model for lambda) 
  sd.bias.alpha1.lam <- vector("list",num.sim) 
  baye.pvalue.alpha1.lam <- vector("list",num.sim) 
   
  m.CV.alpha.lam <- vector("list",num.sim)  #coefficient of variation for alpha (intercept for model for lambda) 
  sd.CV.alpha.lam <- vector("list",num.sim) 
  prop.CV.alpha.lam <- vector("list", num.sim) 
   
  m.CV.alpha1.lam <- vector("list",num.sim)  #coefficient of variation for alpha1 (slope for model for lambda) 
  sd.CV.alpha1.lam <- vector("list",num.sim) 
  prop.CV.alpha1.lam <- vector("list", num.sim) 
   
  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 
  sd.CV.Ntot <- vector("list",num.sim) 
  prop.CV.Ntot <- vector("list", num.sim) 
   
  #******************** 
  # Start Simulation 
  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    #Simulate data 
    S = S  # spatial reps 
    V = V  # temporal reps 



    xmin = xmin 
    xmax = xmax 
    alpha.lam = log(lambda.orig) 
    alpha1.lam = alpha1.lam 
    prob = prob # probablity of detection 
     
    # Create structure to contain counts 
    y <- array(dim = c(S,V)) 
     
    # sample abundance from a Poisson  
    X <- sort(runif(n=S, min=xmin, max=xmax)) #covariate values 
    lambda <- exp(alpha.lam + alpha1.lam * X) #relationship between expected lambda and covariate 
    N <- rpois(n=S, lambda=lambda) # site-specific abundances 
     
    # sample counts from a Binomial distribution (N, prob) 
    for (j in 1:V){ 
      y[,j] <- rbinom(n = S, size = N, prob = prob) 
    } 
     
    # Bundle data 
    win.data <- list(y = y, S = nrow(y), V = ncol(y), X = X) 
     
    # initial values 
    Nst <- apply(y, 1, max) + 1 # This line is vital 
    inits <- function() list(N = Nst, alpha = runif(1,-1,1), alpha1 = runif(1,-1,1)) 
     
    # Define parameters to be monitored 
    params <- c("alpha", "alpha1", "p", "Ntotal", "N") 
     
    # MCMC settings 
    ni <- 5000 
    nt <- 1 
    nb <- 100 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "Nmix.Lam.Cov.txt", n.chains = nc, 
                n.thin = nt, n.iter = ni, n.burnin = nb) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### EValuate bias #### 
    #************************************** 
    #Bias in N (site specific abundance) 
    bias.Nsite <- out$mean$N - N #calculates bias 
    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 
    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
    baye.pvalue.Nsite[k] <-mean(N > out$mean$N)  #Bayesian P-value (proportion of simulations where the true 
abundance was greater than the estimated abundance - values close to 0 or 1 indicate significant bias) 
     



    #Bias in intercept for log-linear regression of expected abundance per site on a habitat covariate - descriptions 
same as above 
    bias.alpha.lam <- out$mean$alpha - alpha.lam 
    m.bias.alpha.lam[k] <- mean(bias.alpha.lam) 
    sd.bias.alpha.lam[k] <- sd(bias.alpha.lam) 
    baye.pvalue.alpha.lam[k] <- mean(alpha.lam > out$mean$alpha) 
     
    #Bias in slope for log-linear regression of expected abundance per site on a habitat covariate - descriptions same 
as above 
    bias.alpha1.lam <- out$mean$alpha1 - alpha1.lam 
    m.bias.alpha1.lam[k] <- mean(bias.alpha1.lam) 
    sd.bias.alpha1.lam[k] <- sd(bias.alpha1.lam) 
    baye.pvalue.alpha1.lam[k] <- mean(alpha1.lam > out$mean$alpha1) 
     
    #Bias in p (probability of detection) - descriptions same as above 
    bias.p <- out$mean$p - prob 
    m.bias.p[k] <- mean(bias.p) 
    sd.bias.p[k] <- sd(bias.p) 
    baye.pvalue.p[k] <- mean(prob > out$mean$p) 
     
    #Bias in Ntotal (total population size) - descriptions same as above 
    bias.Ntot <- out$mean$Ntotal - sum(N) 
    m.bias.Ntot[k] <- mean(bias.Ntot) 
    sd.bias.Ntot[k] <- sd(bias.Ntot) 
    baye.pvalue.Ntot[k] <- mean(sum(N) > out$mean$Ntotal) 
     
    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 
    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 
    m.CV.Ntot[k] <- mean(CV.Ntot) 
    sd.CV.Ntot[k] <- sd(CV.Ntot) 
    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) for alpha 
    CV.alpha.lam <- abs(out$sd$alpha/out$mean$alpha) 
    m.CV.alpha.lam[k] <- mean(CV.alpha.lam) 
    sd.CV.alpha.lam[k] <- sd(CV.alpha.lam) 
    prop.CV.alpha.lam[k] <- mean(CV.alpha.lam < 0.15) 
     
    #Coefficient of Variation in local abundance (lambda / average local abundance) for alpha1 
    CV.alpha1.lam <- abs(out$sd$alpha1/out$mean$alpha1) 
    m.CV.alpha1.lam[k] <- mean(CV.alpha1.lam) 
    sd.CV.alpha1.lam[k] <- sd(CV.alpha1.lam) 
    prop.CV.alpha1.lam[k] <- mean(CV.alpha1.lam < 0.15) 
     
  }  ) #This will be the end of the simulations 
   
  #******************** 
  # Summary of Results  
  #******************** 
  results <- c("alpha", "alpha1", "prob", "N.total", "N.site", "N.total.CV", "lambda.alpha.CV", "lambda.alpha1.CV", 
"Prob.CV.Ntot", "Prob.CV.alpha.lambda", "Prob.CV.alpha1.lambda") 
  mean.bias <- round(c((mean(unlist(m.bias.alpha.lam))), (mean(unlist(m.bias.alpha1.lam))), 
(mean(unlist(m.bias.p))), (mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), 
(mean(unlist(m.CV.alpha.lam))), (mean(unlist(m.CV.alpha1.lam))), NA, NA, NA),2) 
   



  lower.CI <- round(c((quantile(unlist(m.bias.alpha.lam), 0.05)), (quantile(unlist(m.bias.alpha1.lam), 0.05)), 
(quantile(unlist(m.bias.p), 0.05)), (quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), 
(quantile(unlist(m.CV.Ntot), 0.05)), (quantile(unlist(m.CV.alpha.lam), 0.05)), (quantile(unlist(m.CV.alpha1.lam), 
0.05)), NA, NA, NA),2) #lower 95% credible interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.alpha.lam), 0.95)), (quantile(unlist(m.bias.alpha1.lam), 0.95)), 
(quantile(unlist(m.bias.p), 0.95)), (quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), 
(quantile(unlist(m.CV.Ntot), 0.95)), (quantile(unlist(m.CV.alpha.lam), 0.95)), (quantile(unlist(m.CV.alpha1.lam), 
0.95)), NA, NA, NA),2) #upper 95% credible interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 
(mean(unlist(m.CV.alpha.lam) > 0.15)), (mean(unlist(m.CV.alpha1.lam) > 0.15))) #percent of CV's greater than 
15% 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.alpha.lam))),(mean(unlist(baye.pvalue.alpha1.lam))), 
(mean(unlist(baye.pvalue.p))), (mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, 
NA, NA, NA),2) 
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a table of 
results 
  print(sim.results) 
   
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that eight plots can be created in one image 
  par(mfrow = c(8,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Nsite), xlim=c(-5,5), breaks=120, main="", ylab="N.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.alpha.lam), xlim=c(-1,1), main="", ylab="alpha lambda")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.alpha1.lam), xlim=c(-1,1), main="", ylab="alpha1 lambda")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.p), xlim=c(-0.5,0.5), main="", ylab="Detection prob.")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Ntot), xlim=c(-100,100), main="", ylab="Total N")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.Ntot), xlim=c(0,0.5), main="", ylab="CV Ntotal")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.alpha.lam), xlim=c(0,0.5), main="", ylab="CV alpha lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.alpha1.lam), xlim=c(0,0.5), main="", ylab="CV alpha lambda")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.alpha.lam = unlist(m.bias.alpha.lam), 
m.bias.alpha1.lam = unlist(m.bias.alpha1.lam), m.bias.p = unlist(m.bias.p), m.bias.Ntot = unlist(m.bias.Ntot), 
m.CV.Ntot = unlist(m.CV.Ntot), m.CV.alpha.lam = unlist(m.CV.alpha.lam), m.CV.alpha1.lam = 



unlist(m.CV.alpha1.lam), alpha.lam = alpha.lam, alpha1.lam = alpha1.lam, prob = prob, S = S, V = V, num.sim = 
num.sim)) 
} 
 
  



S13. Complete Bayesian model specification and simulation code in R language for evaluating 
dusky grouse survey protocols for line transects using hierarchical distance sampling in a 
population in which average local abundance declined with a hypothetical covariate X and 
probability of detection was kept constant.   

# Function for simulating and analyzing data using a hierarchical distance sampling model for line transects in 
which local abundance declined strongly (or weakly), B = -1, (or B = -0.5) with standardized hypothetical site 
covariate. Sigma is kept constant. 
 
# Code adapted from:  
#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of distribution, abundance, and 
species richness in R and BUGS. Academic Press, London, United Kingdom. 
# Kery, M. and M. Schaub. 2012. Bayesian population analysis using WinBUGS. A hierarchical perspective. 
Elsevier Inc. 
 
# nsites = number of sites 
# lambda.orig = average local abundance per transect estimated from the 2020 & 2021 data 
# alpha (log(lambda.orig)) & alpha1 = intercept and slope of log-linear regression relating abundance to site 
covariate X 
# sigma = sigma for the half-normal detection function 
# num.sim = number of simulations 
# L = transect length 
# xmin & xmas = lower and upper limits of distribution when generating covariate X 
 
Sim.HDS.line.fn.Lam.Cov <- function(nsites = nsites, lambda.orig = lambda.orig, alpha1 = alpha1, sigma = sigma, 
num.sim = num.sim, L = L, xmin = xmin, xmax = xmax) { 
  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 
   
  #*************** 
  # Define Bayesian Model  
  #*************** 
   
  # Specify model in Bugs language, but going to use JagsUI/jags 
  sink("line.Lam.Cov.txt") 
  cat(" 
 model{ 
  # Priors 
  sigma ~ dunif(0,100) #vague prior for sigma 
  alpha ~ dunif(-10,10) #vague prior for alpha (intercept for log-linear regression relating abundance to site covariate 
X) 
  alpha1 ~ dunif(-10,10) #vague prior for alpha1 (slope for log-linear regression relating abundance to site covariate 
X) 
  for(i in 1:nind){ 
   dclass[i] ~ dcat(fc[site[i],]) # Part 1 of HM - model for distance class of the observed individuals 
} 
  for(s in 1:nsites){ 
    # Construct cell probabilities for nD distance bands 
    for(g in 1:nD){                # midpt = mid-point of each band 
      log(p[s,g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma) # half-normal detection function 
      pi[s,g] <- delta/B # prob. per interval 
      f[s,g] <- p[s,g] * pi[s,g] 
      fc[s,g] <- f[s,g] / pcap[s] 
    } 
    pcap[s] <- sum(f[s,])           # Pr(capture): sum of rectangular areas 
    ncap[s] ~ dbin(pcap[s], N[s])   # Part 2 of HM - describes imperfect detection leading to count n[s] 



    N[s] ~ dpois(lambda[s])         # Part 3 of HM - describes spatial variation in local abundance N[s] 
    log(lambda[s]) <- alpha + alpha1 * X[s] # linear model for abundance 
  } 
  # Derived parameters 
  Ntotal <- sum(N[]) #total of abundance at each site (N) 
  area <- nsites*L*2*B/1000000 #area of transects 
  D <- Ntotal/area #density 
} 
    ",fill = TRUE) 
  sink() 
     
  #************************************************** 
  # Loop for replicating datasets and assessing bias 
  #************************************************** 
    num.sim <- num.sim 
   
  # Create empty vectors to store results from replicated datasets 
  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 
  sd.bias.Nsite <- vector("list",num.sim) 
  baye.pvalue.Nsite <- vector("list",num.sim)  
  m.Ntrue <- vector("list",num.sim)  
  m.N <- vector("list",num.sim)  
   
  m.bias.sigma <- vector("list",num.sim) #bias in sigma (for the half-normal detection function) 
  sd.bias.sigma <- vector("list",num.sim) 
  baye.pvalue.sigma <- vector("list",num.sim) 
  m.sig <- vector("list", num.sim) 
   
  m.bias.Ntot <- vector("list",num.sim) #bias in total N 
  sd.bias.Ntot <- vector("list",num.sim) 
  baye.pvalue.Ntot <- vector("list",num.sim) 
  m.bias.Ntot <- vector("list", num.sim) 
  m.Ntot.true <- vector("list", num.sim) 
  m.Ntot <- vector("list", num.sim) 
   
  m.bias.alpha <- vector("list",num.sim)  #bias in alpha (intercept for model for lambda) 
  sd.bias.alpha <- vector("list",num.sim) 
  baye.pvalue.alpha <- vector("list",num.sim) 
  m.alpha <- vector("list", num.sim) 
   
  m.bias.alpha1 <- vector("list",num.sim)  #bias in alpha1 (slope for model for lambda) 
  sd.bias.alpha1 <- vector("list",num.sim) 
  baye.pvalue.alpha1 <- vector("list",num.sim) 
  m.alpha1 <- vector("list", num.sim) 
   
  m.bias.den <- vector("list", num.sim) #bias in density 
  sd.bias.den <- vector("list", num.sim) 
  baye.pvalue.den <- vector("list", num.sim) 
  m.density <- vector("list", num.sim) 
  m.density.true <- vector("list", num.sim) 
   
  m.CV.alpha <- vector("list",num.sim)  #coefficient of variation for alpha (intercept for model for lambda) 
  sd.CV.alpha <- vector("list",num.sim) 
  prop.CV.alpha <- vector("list", num.sim) 
   
  m.CV.alpha1 <- vector("list",num.sim)  #coefficient of variation for alpha1 (slope for model for lambda) 



  sd.CV.alpha1 <- vector("list",num.sim) 
  prop.CV.alpha1 <- vector("list", num.sim) 
   
  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 
  sd.CV.Ntot <- vector("list",num.sim) 
  prop.CV.Ntot <- vector("list", num.sim) 
   
  #******************** 
  # Start Simulation 
  #******************** 
   
  # Stick simulation in loop and replicate num.sim times 
  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 
     
    # ************** 
    # Simulate Data 
    # ************** 
    # Simulate abundance model (Poisson GLM for N) 
    alpha <- log(lambda.orig) #intercept of log-linear regression of expected lambda per site on covariate 
    X <- sort(runif(n=nsites, min=xmin, max=xmax)) #covariate values 
    lambda <- exp(alpha + alpha1 * X) # relationship between expected abundance (lambda) and covariate X / 
density per "square" 
     
    # Simulate abundance model (Poisson GLM for N) 
    N <- rpois(nsites, lambda)                  # site-specific abundances 
    N.true <- N  #true abundance at each site, for a transect this is the same as N (differs for point counts) 
    B <- 100 #half-width of transect 
    L <- L #length of transect 
    area <- nsites*L*2*B/1000000 #area (meters squared) 
    den.true <- sum(N)/area #true density 
     
    # Simulate observation model - set up empty dataframe 
    data <- NULL 
     
    for(i in 1:nsites){ 
      if(N[i]==0){ #if abundance at a site is 0 
        data <- rbind(data, c(i,NA,NA,NA,NA)) # save site, y=1, u, v, d 
        next 
      } 
      # Simulation of distances, uniformly, for each individual in population 
      # note it piles up all N[i] guys on one side of the transect 
      d <- runif(N[i], 0, B) 
      p <- exp(-d *d / (2 * (sigma^2))) #half-normal detection function 
      # Determine if individuals are captured or not 
      y <- rbinom(N[i], 1, p) 
      u <- v <- rep(NA, N[i])   # coordinates (u,v) 
      # Subset to "captured" individuals only 
      d <- d[y==1] 
      u <- u[y==1] 
      v <- v[y==1] 
      y <- y[y==1] 
       
      # Compile things into a matrix and insert NA if no individuals were 
      # captured at site i. Coordinates (u,v) are not used here. 
      if(sum(y) > 0) 
        data <- rbind(data, cbind(rep(i, sum(y)), y, u, v, d)) 



      else 
        data <- rbind(data, c(i,NA,NA,NA,NA)) # make a row of missing data 
    } 
    colnames(data) <- c("site", "y", "u", "v", "d") # name 1st col "site" 
     
    # ************************* 
    # Prep Data for analysis 
    # ************************* 
    ncap <- table(data[,1])            # ncap = 1 if no individuals captured 
    sites0 <- data[is.na(data[,2]),1] # sites where nothing was seen 
    ncap[as.character(sites0)] <- 0    # Fill in 0 for sites with no detections 
    ncap <- as.vector(ncap)            # Number of individuals detected per site 
    site <- data[!is.na(data[,2]),1]   # Site ID of each observation 
    delta <- 10                       # Distance bin width for rectangular approximation 
    midpt <- seq(delta/2, B, delta)    # Make mid-points and chop up data 
    dclass <- data[,5] %/% delta + 1   # Convert distance to distance category 
    nD <- length(midpt)                # Number of distance intervals 
    dclass <- dclass[!is.na(data[,2])] # Observed categorical observations 
    nind <- length(dclass)             # Total number of individuals detected 
     
    # Bundle data 
    win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt, delta=delta, ncap=ncap, dclass=dclass, 
site=site, L=L, X=X) 
     
    # initial values 
    Nst <- ncap + 1 # This line is vital 
    inits <- function() list(N = Nst, sigma = runif(1,30,60)) 
     
    # Define parameters to be monitored 
    params <- c("alpha", "alpha1", "sigma", "Ntotal", "D", "N") 
     
    # MCMC settings 
    ni <- 5000 
    nt <- 1 
    nb <- 1000 
    nc <- 3 
     
    start.time = Sys.time()  #set timer 
    # run model 
    out <- jags(win.data, inits, params, "line.Lam.Cov.txt", n.chains = nc, 
                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
    print(out) 
     
    end.time = Sys.time() 
    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 
    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 
     
    #************************************** 
    #### EValuate bias #### 
    #************************************** 
    #Bias in N (site specific abundance) 
    bias.Nsite <- out$mean$N - N.true #calculates bias 
    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 
    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
    baye.pvalue.Nsite[k] <-mean(N.true > out$mean$N)  #Bayesian P-value (proportion of simulations where the true 
abundance was greater than the estimated abundance - values close to 0 or 1 indicate significant bias) 



     
    #Bias in intercept for log-linear regression of expected abundance per site on a habitat covariate - descriptions 
same as above 
    bias.alpha <- out$mean$alpha - alpha 
    m.bias.alpha[k] <- mean(bias.alpha) 
    sd.bias.alpha[k] <- sd(bias.alpha) 
    baye.pvalue.alpha[k] <- mean(alpha > out$mean$alpha) 
    m.alpha[k] <- out$mean$alpha 
     
    #Bias in slope for log-linear regression of expected abundance per site on a habitat covariate - descriptions same 
as above 
    bias.alpha1 <- out$mean$alpha1 - alpha1 
    m.bias.alpha1[k] <- mean(bias.alpha1) 
    sd.bias.alpha1[k] <- sd(bias.alpha1) 
    baye.pvalue.alpha1[k] <- mean(alpha1 > out$mean$alpha1) 
    m.alpha1[k] <- out$mean$alpha1 
     
    #Bias in sigma - descriptions same as above 
    bias.sigma <- out$mean$sigma - sigma 
    m.bias.sigma[k] <- mean(bias.sigma) 
    sd.bias.sigma[k] <- sd(bias.sigma) 
    baye.pvalue.sigma[k] <- mean(sigma > out$mean$sigma) 
    m.sig[k] <- out$mean$sigma 
     
    #Bias in Ntotal (total population size)  - descriptions same as above 
    bias.Ntot <- out$mean$Ntotal - sum(N.true) 
    m.bias.Ntot[k] <- mean(bias.Ntot) 
    sd.bias.Ntot[k] <- sd(bias.Ntot) 
    baye.pvalue.Ntot[k] <- mean(sum(N.true) > out$mean$Ntotal) 
    m.Ntot.true[k] <- sum(N.true) 
    m.Ntot[k] <- out$mean$Ntotal 
     
    #Bias in density - descriptions same as above 
    bias.den <- out$mean$D - den.true 
    m.bias.den[k] <- mean(bias.den) 
    sd.bias.den[k] <- sd(bias.den) 
    baye.pvalue.den[k] <- mean(den.true > out$mean$D) 
    m.density.true[k] <- mean(den.true) 
    m.density[k] <- out$mean$D 
     
    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 
    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 
    m.CV.Ntot[k] <- mean(CV.Ntot) 
    sd.CV.Ntot[k] <- sd(CV.Ntot) 
    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 
     
    #Coefficient of Variation in intercept for log-linear regression of expected abundance per site on a habitat 
covariate 
    CV.alpha <- abs(out$sd$alpha/out$mean$alpha) 
    m.CV.alpha[k] <- mean(CV.alpha) 
    sd.CV.alpha[k] <- sd(CV.alpha) 
    prop.CV.alpha[k] <- mean(CV.alpha < 0.15) 
     
    #Coefficient of Variation in slope for log-linear regression of expected abundance per site on a habitat covariate 
    CV.alpha1 <- abs(out$sd$alpha1/out$mean$alpha1) 
    m.CV.alpha1[k] <- mean(CV.alpha1) 



    sd.CV.alpha1[k] <- sd(CV.alpha1) 
    prop.CV.alpha1[k] <- mean(CV.alpha1 < 0.15) 
     
  }  ) #This will be the end of the simulations 
   
  #******************** 
  # Summary of Results  
  #******************** 
  results <- c("alpha", "alpha1", "sigma", "N.total", "N.site", "N.total.CV", "CV.alpha", "CV.alpha1", 
"Prob.CV.Ntot", "Prob.CV.alpha", "Prob.CV.alpha1") 
  mean.bias <- round(c((mean(unlist(m.bias.alpha))), (mean(unlist(m.bias.alpha1))), (mean(unlist(m.bias.sigma))), 
(mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), (mean(unlist(m.CV.alpha))), 
(mean(unlist(m.CV.alpha1))),NA, NA, NA),2) 
   
  lower.CI <- round(c((quantile(unlist(m.bias.alpha), 0.05)), (quantile(unlist(m.bias.alpha1), 0.05)), 
(quantile(unlist(m.bias.sigma), 0.05)), (quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), 
(quantile(unlist(m.CV.Ntot), 0.05)), (quantile(unlist(m.CV.alpha), 0.05)), (quantile(unlist(m.CV.alpha1), 0.05)),NA, 
NA, NA),2) #lower 95% credible interval 
   
  upper.CI <- round(c((quantile(unlist(m.bias.alpha), 0.95)),(quantile(unlist(m.bias.alpha1), 0.95)), 
(quantile(unlist(m.bias.sigma), 0.95)), (quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), 
(quantile(unlist(m.CV.Ntot), 0.95)), (quantile(unlist(m.CV.alpha), 0.95)), (quantile(unlist(m.CV.alpha1), 0.95)),NA, 
NA, NA),2) #upper 95% credible interval 
   
  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 
0.15)),(mean(unlist(m.CV.alpha) > 0.15)), (mean(unlist(m.CV.alpha1) > 0.15))) #percent of CV's greater than 15% 
   
  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.alpha))), (mean(unlist(baye.pvalue.alpha1))), 
(mean(unlist(baye.pvalue.sigma))), (mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, 
NA, NA, NA, NA),2) 
   
  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) #creates a table of 
results 
  print(sim.results) 
   
  #**************** 
  #Post processing  
  #**************** 
  # Set plots so that eight plots can be created in one image 
  par(mfrow = c(8,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 
   
  # Plots 
  (hist(unlist(m.bias.Nsite), xlim=c(-10,10), main="", ylab="N.site")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.alpha), xlim=c(-1,1), main="", ylab="alpha")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.alpha1), xlim=c(-1,1), main="", ylab="alpha1")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.sigma), xlim=c(-10,10), main="", ylab="Sigma")) 
  (abline(v=0, col="red", lwd=3)) 
   
  (hist(unlist(m.bias.Ntot), xlim=c(-200,200), main="", ylab="Total N")) 
  (abline(v=0, col="red", lwd=3)) 



   
  (hist(unlist(m.CV.Ntot), xlim=c(0,1), main="", ylab="CV Ntotal")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.alpha), xlim=c(0,1), main="", ylab="CV alpha")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  (hist(unlist(m.CV.alpha1), xlim=c(0,1), main="", ylab="CV alpha1")) 
  (abline(v=0.15, col="red", lwd=3)) 
   
  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.alpha = unlist(m.bias.alpha), 
m.bias.alpha1 = unlist(m.bias.alpha1), m.bias.sigma = unlist(m.bias.sigma), m.bias.Ntot = unlist(m.bias.Ntot), 
m.CV.Ntot = unlist(m.CV.Ntot), m.CV.alpha = unlist(m.CV.alpha), m.CV.alpha1 = unlist(m.CV.alpha1), alpha = 
alpha, alpha1 = alpha1, sigma = sigma, nsites = nsites, num.sim = num.sim, density.true = unlist(m.density.true), 
m.density = unlist(m.density), Ntot.true = unlist(m.Ntot.true), m.Ntot = unlist(m.Ntot), m.sigma = unlist(m.sig), 
m.alpha = unlist(m.alpha), m.alpha1 = unlist(m.alpha1), out = out)) 
} 
 
 


