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A B S T R A C T   

Understanding habitat selection is challenging but key for species of conservation concern, including grizzly 
bears (Ursus arctos). Here we demonstrate an approach for understanding and predicting habitat use over 
multiple stages that test hypotheses of animal behavior, use newly gained knowledge to mechanistically simulate 
individual movements, translate results to predictive habitat maps, and test their predictive power across a large 
spatiotemporal scale. Grizzly bears in the Northern Continental Divide Ecosystem of northwest Montana served 
as our study system. Mechanistically modeling grizzly bear movements demonstrated that grizzly bears have 
highly individualistic spatial behaviors. Some individuals avoided whereas others preferred areas of vegetation 
green-up, terrain ruggedness, forest edge, riparian areas, building densities, and secure habitat. Such individu
alism supported the need for an individual-based modeling approach to understand and predict grizzly bear 
behavior. External validation using >375,000 GPS locations for 261 individuals over nearly 2 decades demon
strated mean Spearman rank scores of >0.90 across seasons and years, and overall scores of 1.0. The top 5 classes 
of our predictive habitat maps contained 73.5 % of female fixes and 83.6 % of male fixes, and the top class 
(comprising 10 % of mapped area) contained 25.6 % and 41.7 % of female and male fixes, respectively. Results of 
this research provide tools for conservation planning and serve as the basis for future grizzly bear research within 
our study system and beyond. Our multi-stage approach for understanding and predicting habitat use has high 
utility for conservation of myriad threatened species around the globe.   

1. Introduction 

Habitat loss and degradation are major drivers of threatened species 
declines globally (Ripple et al., 2014; Schipper et al., 2008). Under
standing habitat selection is crucial for maintaining viable populations, 
assessing recovery potentials, informing population reintroductions, 
and mitigating human-wildlife conflicts (e.g., Johnson et al., 2004; 
Mladenoff et al., 1999). Conservation decisions informed by habitat 
selection are particularly relevant for large carnivores whose pop
ulations often span landscapes with varied uses and ownerships. 

Grizzly bears (Ursus arctos) provide a prime example of the need for 
understanding habitat selection. With the arrival of Europeans, perse
cution and habitat loss caused grizzly bears to decline from a population 
of approximately 50,000 individuals to only 4 fragmented populations 
within the continental United States by 1975 (fws.gov). These pop
ulations have increased and expanded due to collaborative conservation 

efforts and protections under the Endangered Species Act. Eventual 
connectivity between populations is a conservation goal, as is estab
lishment of populations in currently unoccupied recovery areas (USFWS 
1993). An understanding of habitat selection by grizzly bears within 
existing populations is crucial for predicting potential linkage zones and 
suitable habitat. Today, one of the largest populations in the continental 
US occurs in the Northern Continental Divide Ecosystem (NCDE; Fig. 1), 
where population estimates exceed 1000 animals (Costello and Roberts, 
2021). As this large and expanding population is likely to be a primary 
source for establishing connectivity to other existing or potential pop
ulations, understanding habitat selection by bears in this population is 
especially key. 

Our objective was to identify and demonstrate a powerful method for 
understanding and predicting habitat use, using grizzly bears in the 
NCDE as a study system. Grizzly bear habitat selection has been widely 
studied (e.g., Mace et al., 1999; McLellan and Hovey, 2001; Milakovic 
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et al., 2012; Waller and Mace, 1997). Our work built on Hooker et al. 
(2021) and Peck et al. (2017) who employed step selection functions to 
simulate bear movements. Recently, Whittington et al. (2022) used step 
selection and hidden Markov models to simulate grizzly bear move
ments and validate habitat models around the town of Canmore in 
Alberta, Canada. Here, we developed a multi-stage approach employing 
individual-based step selection functions to test hypotheses of grizzly 
bear behavior, mechanistically simulate individual bear movements, 
translate results to predictive habitat maps, and externally test their 
predictive power across a broad spatial and temporal scale (Fig. 2). 

Habitat selection by grizzly bears is driven primarily by efforts to 
obtain and store energy for growth, reproduction, and hibernation, but 
is also modified by intraspecific social factors and human influences 
(Schwartz et al., 2003). We focused our analyses on landscape variables 
associated with these drivers and for which data were widely available 
(Appendix). We hypothesized that grizzly bear habitat selection 
involved maximizing access to foods while minimizing energy expen
diture, risks from conspecifics, and exposure to humans (Table 1). We 
further hypothesized that trade-offs among these drivers would result in 
variable strengths of predictors among cohorts. We expected females 
would show strong selection for food-related variables to acquire energy 
for reproduction. Given that adult males often possess ample fat reserves 
and are capable of foregoing constant feeding, we expected their habitat 
selection would show strong relationships with variables associated with 
minimizing energy expenditure and exposure to humans. Finally, we 
expected the strength of selection for some variables would be lessened 

for subordinate bears (females and subadult males), due to their need to 
avoid adult males. 

2. Methods 

2.1. Study area 

Our study area comprised the NCDE Recovery Zone (RZ), the De
mographic Monitoring Area (demarcating the extent of population 
monitoring; DMA), and a 100 km buffer zone around the RZ boundary 
within the US (due to lack of data for Canada), comprising an area of 
133,496 km2 (Fig. 1). The NCDE’s historically glaciated, rugged 
topography consisted of forested habitats interspersed with meadows 
and shrublands at mid to lower elevations and alpine habitats above 
~2000 m. Mountains transitioned to short grass prairie at low eleva
tions. To the north and west, the maritime-influenced climate produced 
dense forest and broad-leaved shrublands. To the south and east, drier 
conditions produced more diffuse forests, evergreen shrublands, and 
prairie grasslands with distinct riparian corridors. Public lands domi
nated the RZ (93 %) and rest of the DMA (63 %). Towns and corporate 
timberlands dominated private lands to the west, while ranchlands and 
agriculture dominated private lands to the east and south. 

2.2. GPS data 

To model and understand grizzly bear movements, we employed 

Fig. 1. The study area comprised the NCDE RZ and DMA, and a 100 km buffer zone around the RZ boundary (red dashed line) within the US. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

S.N. Sells et al.                                                                                                                                                                                                                                  



Biological Conservation 276 (2022) 109813

3

integrated step selection functions (iSSFs; Avgar et al., 2016, Signer 
et al., 2019) and data from grizzly bears monitored via GPS transmitters 
from 2003 to 2021 (Fig. 2). Grizzly bears were captured using culvert 
traps or foot-hold snares for population trend research or management 
purposes (i.e., after conflicts with humans). Bears were aged from a 
premolar tooth (Stoneberg and Jonkel, 1966) or based on tooth erup
tion, wear and coloring. Telonics GPS transmitters (Argos or Iridium) 
were placed primarily on independent-aged bears (≥2 years old) 
including most research-captured females, a sample of research- 
captured males, and most management-captured bears. All grizzly 
bears were handled following protocols approved by the Montana Ani
mal Care and Use Committee (Montana Fish Wildlife and Parks, 2004). 

2.3. Data preparation 

We used package amt (Signer et al., 2019) in Program R (R Core 
Team, 2022) to process grizzly bear GPS data (Fig. 2). We excluded data 
from denning months (Dec – Apr) and dates when bears were trapped, 
released, or killed. We filtered fixes to 3-hour intervals (+/− 45 min) to 
generate movement tracks for each bear of approximately equal sam
pling intervals (Avgar et al., 2016). We then filtered out steps of <100 m 
(to omit stationary steps, as we aimed to model movements) and 
>15,000 m (to omit suspect steps; Appendix). We paired each used step 
with 10 control steps from the same starting point but with step lengths 
and turn angles drawn randomly from each individual’s gamma and von 

Fig. 2. Conceptual framework of a multi-stage method to test hypotheses of animal behavior, mechanistically simulate movements, translate results into predictive 
maps, and externally validate the maps across space and time. Blue boxes indicate data inputs, yellow boxes indicate data preparation steps, and green boxes indicate 
analysis steps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Mises distributions, respectively, as summarized from their movement 
data (Signer et al., 2019). 

At each used and control step, we measured the normalized differ
ence vegetation index (NDVI), terrain ruggedness, distance to forest 
edge, density of forest edge, density of riparian, density of buildings, and 
distance to secure habitat (Table 1; Appendix). We prepared each 
dataset in programs R (R Core Team, 2022) and ArcGIS as rasters with 
300 m resolutions, chosen to balance accuracy in habitat variable rep
resentations across the large study area with computer processing needs. 

We assumed that food availability is suitably indexed by NDVI 
measured during peak green-up (Jun 15 – Jul 15 in the NCDE; Peck 
et al., 2017), and used package MODIStsp (Busetto and Ranghetti, 2016) 
to obtain data during peak green-up each year from 2005 to 2020, which 
we then averaged at each raster cell (Appendix). For ruggedness, we 
used package Elevatr (Hollister, 2020; Z = 12) to obtain elevation data, 
aggregated data to 300 m cell size, and used package spatialEco (Evans, 
2018) to calculate ruggedness as the vector ruggedness measure (Sap
pington et al., 2007). For distance to forest edge, we obtained the 2016 
National Land Cover Dataset (mrlc.gov), reclassified data to forest (de
ciduous, evergreen, mixed forests, and woody wetlands) and non-forest 
(remaining classes), identified forest boundaries with the boundaries 
function in package raster (Hijmans, 2022), measured Euclidean dis
tance, and converted cells within forest to negative values. Negative and 
positive distances thus represented areas inside and outside forest 
polygons, respectively. For density of forest edge, we measured forest 
edge km per km2. For density of riparian, we obtained National Hy
drography Datasets (usgs.gov), selected waterbody boundaries, rivers, 
streams, and artificial paths outside waterbody boundaries, and 
measured line density per km2. We measured ruggedness, density of 
forest edge, and density of riparian as line density (km per km2) with 
search radii of 1100 m and 1500 m from the cell centroid to represent 
typical daily movements for females and males, respectively (Schwartz 
et al., 2010). For density of buildings, we obtained the Microsoft 
Buildings Footprint dataset (github.com/Microsoft/USBuildingFootpri 
nts), calculated centroids of each building footprint, and measured 
point density per km2. For distance to secure habitat, we obtained the 

USFWS Grizzly Bear Secure Core dataset (usfws.gov), selected polygons 
identified as grizzly bear secure core (areas >500 m from roads on 
federal, state, and tribal lands), and measured Euclidean distance to 
these polygons (0 distance represented cells within secure cores). 

2.4. Hypothesis tests 

We developed models and tested our hypotheses of habitat selection 
for grizzly bears in the NCDE (Table 1) via iSSFs, which provide a 
mechanistic means for predicting space use (Fig. 2; Avgar et al., 2016). 
The approach compares covariates associated with animal locations and 
random locations accessible from each animal location. Models use a 
likelihood equivalent of a Cox proportional hazards model to estimate 
conditional selection coefficients. The iSSF has exponential form, 
whereby w(x) = exp.(xβ); w(x) is the iSSF score, x is a vector of habitat 
covariates, and β is the coefficient vector estimated via conditional lo
gistic regression (Avgar et al., 2016; Signer et al., 2019). Higher iSSF 
scores indicate greater relative probabilities of selection. 

We used Program R (R Core Team, 2022) and package amt (Signer 
et al., 2019) to fit a global iSSF model with all habitat covariates to each 
grizzly bear. Each habitat covariate included a quadratic term to allow 
for nonlinear effects (e.g., because there may be points of satiation or 
maximum optimality; Table 1). Grizzly bear habitat selection and 
movements can be influenced by numerous traits, including sex, age, 
reproductive status, prior experience with humans, and local habitat 
(Schwartz et al., 2003). Fitting the model to each bear enabled each 
individual’s behavior to be investigated separately. 

To investigate support for hypotheses, we evaluated each bear’s log 
relative selection strength (log-RSS) across the range of values encoun
tered for each habitat covariate (Avgar et al., 2017; Fieberg et al., 2021). 
To prepare log-RSS values, following Signer et al. (2019) we sequenced 
the covariate of interest from lowest to highest observed values 
(sequence length = 200) using the range of conditions encountered near 
the bear’s track (i.e., as measured at selected and random steps). We 
used the bear’s iSSF model and the log_rss function in package amt 
(Signer et al., 2019) to predict the log-RSS and its corresponding 95 % 
confidence interval (CI) at each value (Fieberg et al., 2021). We then 
plotted results as the sequence of log-RSS values, interpreted as the log- 
RSS between each value of location 1 relative to location 2, where both 
locations are assumed to be equally accessible and only differ in their 
values of the covariate of interest. All results were on original scales 
(distance in meters, density in km2, or indices of NDVI or ruggedness) 
and each bear’s results extended across the range of conditions 
encountered. We summarized each individual’s response as “mostly 
positive” (≥50 % of the individual’s 200 log-RSS values were > 0, and <
50 % of the 200 associated CI values encompassed 0), “mostly negative” 
(≥50 % of the individual’s 200 log-RSS values were < 0 and < 50 % of 
the 200 CI values encompassed 0), or “mostly uncertain” (≥50 % of the 
200 CI values encompassed 0). 

After summarizing results, we tested for patterns in responses using 
chi-squared tests to determine if propensity for a positive versus nega
tive response to each habitat variable was associated with age, man
agement status, relocation history, and location relative to the 
Continental Divide. We classified bears as adults if their average age 
during years of collar deployment was ≥6 years, and remaining bears as 
subadults. We classified individuals as management bears if ever 
captured in response to conflicts with humans, and research bears 
otherwise. Bears with relocation history were relocated ≥ once. Bears 
were classified as “east” or “west” of the Continental Divide, and as “RZ” 
or “DMA,” depending on where most (≥50 %) of their steps fell. 

2.5. Predictive model development 

We next prepared a predictive iSSF for each bear for use in simu
lating habitat selection (Fig. 2). We internally evaluated predictive ca
pacity of the global candidate model for each bear (all habitat covariates 

Table 1 
Variables for grizzly bear habitat selection and associated hypotheses and 
predictions.  

Variable Predicted relationship & 
biological reasoning 

Alternative prediction 

Normalized 
difference 
vegetation index 
(NDVI) 

Positive relationship (to 
increase access to foods) 

Uncertain or negative 
relationship (if avoiding 
conspecifics, or functional 
response due to access to high 
local food availability) 

Terrain ruggedness 

Negative to intermediate (to 
balance energy 
expenditures versus security 
from humans and dominant 
bears) 

Positive (to obtain seasonal 
resources or maximize 
security) 

Distance to forest 
edge 

Negative to intermediate (to 
balance security versus 
access to food) 

Strongly negative (for 
security from humans or 
dominant bears) 

Density of forest 
edge 

Positive (to increase access 
to foods) 

Negative (for security from 
humans or dominant bears) 

Density of riparian 
Positive (to increase access 
to food, thermal cover, and 
water) 

Uncertain or negative 
relationship (to avoid 
dominant bears or if access to 
high local riparian densities) 

Density of 
buildings 

Negative (to decrease 
exposure to human risk) 

Positive (to access 
anthropogenic food 
resources) 

Distance to secure 
(unroaded) 
habitat 

Negative (to increase 
security from human risk) 

Uncertain or positive 
relationship (if functional 
response due to access to high 
local levels of secure habitat, 
or conditioned to human 
presence)  
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as quadratic terms) using 100 iterations of 25 % testing data and 75 % 
training data via k-fold cross-validation (Boyce et al., 2002). For each 
iteration, we used the training data subset to fit the global model, 
calculated resulting iSSF scores for the landscape, and used the cut 
function in package raster (Hijmans, 2022) to determine cut point values 
to bin results into 10 equal-area classes. We next used the fitted model to 
predict iSSF scores for the testing data subset and partitioned resulting 
scores into the iSSF classes using the cut point values identified in the 
previous step. We then calculated Spearman rank correlations to assess 
rank correlation between iSSF class and frequency of testing data iSSF 
scores within each class, where a good model fit should have mono
tonically increasingly scores in the higher classes. We repeated these 
series of calculations 4 times to rotate which 25 % of the data were used 
for testing, and the entire process 100 times before calculating the 
overall mean Spearman rank correlation score for the global model’s 
predictive capacity. We then gradually eliminated or re-added terms 
from the global model and determined which model formulation 
maximized cross-validation scores for each bear. We considered any 
model with a Spearman rank correlation of ≥0.65 to be suitable for 
simulations. 

2.6. Simulations and predicted habitat 

We used each identified iSSF to simulate movements and predict 
habitat selection (Fig. 2). For each bear, we created a raster surface of 
iSSF values using the identified model. We calculated values as exp.(βxi) 
(Northrup et al., 2022); β is the coefficient vector of the estimated iSSF 
model and xi the vector of habitat covariates of cell i. We then trimmed 
extremes using the 0.025 and 0.975 quantile values and normalized 
remaining values to a 0–1 scale (Squires et al., 2013). We next initiated 
each simulation from a random point within the DMA. We used the 
bear’s observed step length and turn angle distributions to randomly 
select the first step length and bearing, and thereafter to generate 11 
steps within the study area (Peck et al., 2017). Each step received a 
probability weight equal to its iSSF value divided by the sum of the 11 
step values. A step was selected by sampling from the probability- 
weighted steps. This cycle occurred for 5000 steps, reflecting the 
approximate steps over three annual active seasons (May through Nov) 
when sampled at 3-hour intervals. We completed 100 iterations of this 
sequence per bear. Simulation results were the sum of times each grid 
cell was selected during simulations. 

We prepared predictive habitat maps for males and females from 
simulation results. To do so, we binned results within the DMA into 10 
equal area quantile classes of relative probability of use, such that lowest 
use was class 1 and highest use was class 10 (Morris et al., 2016). To 
further understand predicted habitat, we measured habitat variables for 
each of the class values and created boxplots of results. 

2.7. External validation 

Lastly, we externally validated predictive capacity of the habitat 
maps for each sex using GPS fixes omitted from model development 
(May 1 – Nov 30, 2003–2021; no filtering for step lengths or intervals 
applied; Fig. 2). We overlaid female and male GPS locations onto the 
respective habitat maps and extracted habitat values. We area-adjusted 
frequencies of steps (as the quantile breakpoints led to slight differences 
in area per class) and calculated Spearman rank correlations (Boyce 
et al., 2002). To determine if predictive capacity varied for results west 
versus east of the Continental Divide or within the RZ versus DMA, we 
subset location data to each area and again validated results. We next 
evaluated predictive capacity for 15-day intervals of the primary active 
season (May – Nov), for individual year, and for individuals by subset
ting locations accordingly and validating results for subsets with ≥500 
fixes. Finally, we evaluated predictive capacity for early spring (Mar 1 – 
Apr 30, prior to the primary active season for which models were 
developed) to evaluate how well these models predicted habitat related 

to denning and spring habitat post den emergence. 

3. Results 

Data for 166 GPS-collared female grizzly bears were available (Ap
pendix). Filtering data for iSSF analyses yielded data for 47 individuals 
(n = 59,756 fixes, mean 1271 per individual) collected over 120 bear- 
years (mean = 2.6 years of data/bear, range 1–6 years) from May 
2004 to Sept 2020. Mean age was 8.4 years (range 1–26 years). Of the 47 
females, 18 were subadults, 20 were classified as management bears, 30 
were west of the Continental Divide, and 33 were primarily in the RZ. 
Median step length was 1167 m, and step length and turn angle distri
butions varied by individual (Appendix). 

Data for 99 GPS-collared male grizzly bears were available, of which 
20 individuals had sufficient data for analysis (n = 16,331 fixes, mean =
817 per individual) collected over 40 bear-years (mean = 2.0 years of 
data/bear, range 1–4 years) from May 2003 to June 2020. Mean age was 
4.7 years (range 2–16 years). Of the 20 individuals, 16 were subadults, 
11 were management bears, 18 were west of the Continental Divide, and 
14 were primarily in the RZ. Median step length was 1291 m, and step 
length and turn angle distributions varied by individual (Appendix). 

Female and male responses varied widely for every habitat variable 
measured (Fig. 3, Table 2, Appendix). Based on chi-squared tests, there 
was generally no evidence that propensity for positive versus negative 
responses was associated with age class, management status, relocation 
history, or location relative to the Continental Divide or RZ. However, 
females classified as management bears (p-value = 0.083) or who had a 
relocation history (p-value = 0.060) were more likely to react positively 
toward density of riparian. 

Upon identifying an iSSF for each bear that maximized predictive 
power (Appendix), mean internal cross validation score was 0.92 for 
females (min 0.65, max 0.99) and 0.93 for males (min 0.83, max 0.99) 
after omitting one bear per sex whose score was too low to reliably 
predict movement (0.31 and 0.56, respectively). 

Simulated steps were distributed throughout the DMA and extended 
into surrounding areas (Fig. 4). Areas of highest step densities were 
generally located within or near the RZ. Outside the RZ, movements 
were generally diffuse to the west and south. On the east, however, 
movements were concentrated within specific pathways associated with 
forested river corridors. 

Within the DMA, greatest relative use by simulated bears often 
occurred in valleys and along the Rocky Mountain Front (Fig. 4; Ap
pendix). Predicted use increased with NDVI (Fig. 5). The top ranked 
habitat use bin had low terrain ruggedness. Predicted use concentrated 
in areas closer to forest edges and of higher forest edge densities. Pre
dicted use correlated positively with higher riparian densities, particu
larly for males. Density of buildings was consistently low across ranks of 
predicted use, as was distance to secure habitat, particularly for females. 

External model validation revealed high predictive capacity (Fig. 6). 
Spearman rank correlation scores were 1.0 for both females and males 
(based on 248,731 female and 128,449 male GPS locations not used for 
model development, 2003–2021, representing 164 females and 97 
males). Predictive capacity east (n = 85,847) versus west (n = 291,333) 
of the Continental Divide was 0.99 and 1.0 for females, and 0.98 and 1.0 
for males, respectively. Predictive capacity in the RZ (n = 257,927) 
versus DMA (n = 119,253) was 1.0 and 1.0 for females, and 0.99 and 1.0 
for males, respectively. Scores remained high across the primary active 
season (May – Nov; female mean = 0.98, male mean = 0.95). Predictive 
maps were less accurate but still reasonable for early spring (Mar 1 – Apr 
30, n = 30,569 female fixes and 15,024 male locations; female mean =
0.70, male mean = 0.76). Scores were high across years of our study 
(female mean = 0.93, male mean = 0.90). In total, the top 5 classes of 
our predictive habitat maps (comprising 50 % of the DMA) contained 
73.5 % of female fixes and 83.6 % of male fixes, and the top class 
(comprising 10 % of the DMA) contained 25.6 % and 41.7 % of female 
and male fixes, respectively. 
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4. Discussion 

Our method for understanding and predicting habitat use for species 
of conservation concern provided greater understanding of spatial 
behavior of our study species and a strong predictive capacity. Our 
multi-stage approach first tested hypotheses of animal behavior and 
then used the new knowledge to mechanistically simulate individual 
movements, translate results to predictive habitat maps, and test their 
predictive power across a large spatiotemporal scale (Fig. 2). In addition 
to serving as a case study for a means to understand and predict habitat 
use for species of conservation concern, this work improves under
standing of how grizzly bears interact with their environments and are 
influenced by natural and human-related features. Simulations yielded 
predictive habitat maps that highlight areas likely to be repeatedly 
selected, and external validation demonstrated high predictive capacity 
across space and time. 

Grizzly bears in the Northern Continental Divide Ecosystem 
demonstrated highly individualistic spatial behavior. Unsurprisingly for 
a generalist species (Schwartz et al., 2003), variation in attraction and 
avoidance was evident in response to every habitat measure in our 
analysis (Fig. 3, Table 2, Appendix). Accordingly, across individuals 
there was support for each of our primary or alternative hypotheses. 
Because our models did not include interaction terms, responses to each 
habitat variable should not be strictly interpreted alone. Given the vast 
study area, some of the individual variation in behavior is likely related 
to variable habitats encountered. For example, while most bears 
generally selected for areas with higher NDVI, they varied more widely 
in their response to terrain ruggedness and density of riparian. These 
differences may also represent functional responses to available 

resources. Primary productivity and food availability may be more 
heavily influenced by topography and presence of streams in areas with 
drier versus moister conditions, and bears may respond accordingly. Our 
tests comparing bears east (drier) versus west (moister) of the Conti
nental Divide did not detect this difference, but perhaps this dichotomy 
was too coarse. In the future, more localized studies may reveal infor
mative differences in selection for variables as they relate to regional 
food economies (Mealey, 1980). The varied response to covariates also 
may be related to conspecific competition for space or learned behavior 
passed from mother to offspring. For example, as expected under an 
ideal free distribution (Fretwell and Lucas, 1969), some individuals may 
opt to maintain home ranges in seemingly sub-optimal areas (e.g., with 
lower NDVI values) if there are many conspecifics in otherwise more 
desirable areas. 

Results also demonstrated likely differences in behavior between 
sexes. Although these differences were potentially confounded by the 
proportion of subadult versus adult bears represented in each group (38 
% of females were subadults, versus 80 % of males), results supported 
our hypotheses about how habitat use may vary by sex. Female habitat 
selection more positively correlated with NDVI, supporting our hy
pothesis about the importance of food resources in female spatial 
behavior (Table 2). We expected this relationship would occur given the 
importance of body mass to sustain dependent young and hibernation 
(Schwartz et al., 2003). Males appeared more averse to ruggedness 
overall (Table 2, Fig. 5), which we hypothesized may be an outcome of 
attempts to reduce energy expenditure given their larger body masses. 
Indeed, Carnahan et al. (2021) found that grizzly bears use less steep 
slopes and reduce speed on steep terrain to conserve energy. 

As hypothesized, grizzly bears in the NCDE, and females in 

Fig. 3. Female (blue) and male (red) responses to habitat variables. Each line represents an individual’s log relative selection strength (log-RSS) between each value 
of location 1 relative to location 2, where both locations were assumed to be equally accessible and only differed in their values of the covariate of interest. Responses 
were “mostly positive” (≥50 % of log-RSS values were > 0), “mostly negative” (≥50 % of log-RSS values were < 0), or “mostly uncertain” (≥50 % of CI values 
encompassed 0; not shown). Each line extends the range of conditions the bear encountered except where extreme values are trimmed (full plots with uncertain 
responses and all CIs shown in Appendix). 
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particular, were generally attracted to the interface of forested and non- 
forested areas (Fig. 5, Table 2). Females may prefer these areas to meet 
energetic needs and protect cubs if, as hypothesized, forest edges 
contain more diverse foods than interior forest and offer security relative 
to open areas. Similarly, grizzly bears elsewhere have been observed to 
select for forest edge (Blanchard, 1983; Frąckowiak et al., 2014), areas 
transitional from shrub to conifer (Stewart et al., 2013), and clearcuts 
edges (Nielsen et al., 2004). We do not expect all forest edge to be of 
equal use to bears, however; given that much of the NCDE is publicly 
owned, many forest edges interface with other natural areas. Where 
humans predominate, particularly beyond the DMA, we expect forest 
edge to be of less utility when interfacing with anthropogenic 
developments. 

Male grizzly bears were often attracted to riparian areas (Fig. 5; 
Table 2). This supports the hypothesis that males may select these areas 
for their productivity, cover from humans, and thermal regulation. In 
contrast, nearly a quarter of females had mostly negative responses to 
density of riparian (Table 2). This aligns with existing evidence that to 
protect cubs, females segregate from males (Ciarniello et al., 2007), use 
different areas of the landscape (Elfström et al., 2014), and avoid con
centrations of other bears (Suring et al., 2006). Interestingly, females 
classified as management bears and with relocation histories positively 
selected for riparian areas, suggesting riparian habitat may provide se
curity for bears aversely conditioned to humans. Alternatively, most 
human settlement, and thus management captures, occurred in lower 
elevations, where riparian areas may encompass the most abundant 
cover and food resources. 

Males and females showed mostly similar overall responses to 
human-related habitat variables (Fig. 3, Table 2). Most bears avoided 
areas of greater building densities and bears exposed to higher densities 
had highly negative responses. The handful of individuals with mostly 
positive responses showed weak selection and experienced only low 
building densities. Positive selection for human developments may 
occur during years or seasons of low food quality or availability, as 
found for black bears (Johnson et al., 2015). 

At least some individuals were averse to areas farther from secure 
habitat (Fig. 3, Table 2). For females in particular, habitat predicted to 
be of higher use was closer to or within secure habitat (Fig. 5). Because 
secure habitat accounts for absence of roads, these results likely 
demonstrate some individuals’ avoidance of roads and human activity 
(Mace et al., 1996). In contrast, the overall weak response to secure 
habitat by males likely reflects the generally larger movements and 
larger home ranges used by males (Schwartz et al., 2010), which may 
inhibit the ability by at least some individuals to consistently remain 
close to secure habitat. Given that much of the RZ is secure habitat 
protected as wilderness or specifically to enhance grizzly bear use, we 
suspect the importance of such areas may be further enhanced beyond 
the RZ where bears encounter less secure habitat. 

Our individual models and habitat maps had high predictive capacity 
based on external validation using >375,000 grizzly bear locations for 
164 females and 97 males (Fig. 6), despite inevitable modeling as
sumptions. For example, we assumed that habitat variables were static 

temporally; however, predictive capacity was high across our nearly 20- 
year study. Pooling data for each bear assumed that an individual’s 
movement behaviors were consistent across years. We expect in
dividuals alter spatial behaviors to some extent as they age and learn 
about their surroundings, or when accompanied by dependent young, 
and this likely underlies the more variable individual validation per
formances. The predictive habitat maps also assume that our sample of 
modeled females and males was representative of the population and 
that the included habitat variables suitably explained movement de
cisions. Our sample of research-captured bears was designed to be 
representative of the population. Although bears captured in conflict 
situations represented a biased sample, inclusion of these bears enabled 
us to estimate habitat selection across a wider range of human in
fluences. Additionally, our use of steps ≥100 m apart to develop models 
focused on movements rather than stationary states; however, resulting 
habitat maps remained predictive of all external grizzly bear locations 
available, including those <100 m apart. 

The predictive habitat map indicated that highly selected habitat was 
distributed throughout the RZ and was present across large areas outside 
of the RZ. This supports previous analyses indicating full occupancy by 
reproductive females within DMA management units (Costello and 
Roberts, 2021). In most of the ecosystem, habitats predicted to be 
selected and avoided by grizzly bears were heavily interspersed, sub
stantiating the value of the RZ as core grizzly habitat and providing 
evidence of efficacy of habitat protections, like access management. 
More contiguous areas of highly selected habitat occurred in large val
leys, often coincident with human settlement, indicating grizzly bears 
and humans likely selected for similar landscape characteristics, i.e., less 
rugged, more productive sites. Areas of low-density, rural human 
development often provide both natural and anthropogenic foods for 
grizzly bears. Some bears make use of these resources, often by shifting 
to a nocturnal activity pattern when human activity is high (Lamb et al., 
2020). Nonetheless, our analyses suggested a limit to this overlap be
tween grizzly bears and humans. Some of the more contiguous areas 
predicted to be highly avoided by bears were associated with the highest 
human densities, such as Kalispell, a city of >25,000 people (census. 
gov). Other more contiguous areas of predicted avoidance were char
acterized by a lack of forest cover, like open prairie habitat to the east of 
the NCDE. Even in these human-developed and prairie areas, however, 
some networks of selected habitat occurred, primarily near riparian 
corridors. 

Large landscape mapping based on movement decisions by actual 
bears may prove valuable for informing conservation decisions. For 
example, site-specific predictions of habitat use could help identify areas 
for conservation easements on private lands or placement of crossing 
structures across high-volume roads. Habitat maps could also help 
identify how to mitigate negative impacts on grizzly bear habitat use 
from development, recreation, or vegetation management. With the 
availability of these predictions over a vast landscape, like the NCDE, 
maps like these could also be used to help evaluate the cumulative im
pacts of individual actions. Finally, maps can be re-evaluated in future 
years as new data become available and updated via new simulations as 

Table 2 
Percentage of individuals (n = 47 females and 20 males) responding to habitat variables as “mostly positive” (≥50 % of log-RSS values were > 0 and < 50 % of the 
associated CI values encompassed 0), “mostly negative” (≥50 % of log-RSS values were < 0 and < 50 % of CI values encompassed 0), or “mostly uncertain” (≥50 % of 
CI values encompassed 0).  

Variable Trend for females (%) Trend for males (%) 

Negative Positive Uncertain Negative Positive Uncertain 

NDVI  4.3  59.6  36.2  0.0  30.0  70.0 
Ruggedness  29.8  19.1  51.1  40.0  20.0  40.0 
Distance to forest edge  72.3  6.4  21.3  45.0  5.0  50.0 
Density of forest edge  4.3  36.2  59.6  5.0  10.0  85.0 
Density of riparian  23.4  27.7  48.9  5.0  50.0  45.0 
Density of buildings  23.4  8.5  68.1  30.0  20.0  50.0 
Distance to secure habitat  27.7  12.8  59.6  20.0  20.0  60.0  
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Fig. 4. Predictive habitat map for females (upper panel) and males (lower panel). The upper right inset maps reveal the number of times each cell was chosen during 
simulated movements (see Appendix for larger versions). Values in each main panel represent the quantile-binned relative habitat use values, as summarized within 
the DMA where simulated movements originated. 
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Fig. 5. Summarized cell values for habitat variables as measured within each of the 10 quantiles of predicted habitat use within the NCDE DMA (Fig. 4). White dots 
are median values, boxes are 50 % interquartile ranges, and thin lines extend to the 95 % values. Horizontal lines indicate median values available on the landscape 
(these slightly differ by sex for variables calculated within mean daily movement distances). 
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Fig. 6. External validation of predictive habitat maps based on >375,000 grizzly bear fixes for 261 individuals: Spearman rank correlation scores for 15-day intervals 
of the active season, individual years, and early spring (Panel A; horizontal lines indicate means); percentages of fixes in each iSSF class (1− 10) for individuals (Panel 
B; each line represents one bear); and combined percentages of fixes in each iSSF class (Panel C). 
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future conditions change. 
Our approach provides a powerful way to understand and predict 

habitat use for species of conservation concern, following a multi-stage 
method to test hypotheses of animal behavior, mechanistically simulate 
movements, translate results into predictive maps, and externally vali
date the maps across space and time. Applying this approach to our 
study system contributed knowledge about grizzly bear space use and 
predictive habitat maps. Our approach has high utility for conservation 
of myriad threatened species around the globe, and simultaneously 
provides a strong foundation for future research. For example, predic
tive models developed from this approach can be used to further simu
late potential corridors among populations, and to test external 
predictive capacity for other populations. Such efforts would be 
particularly useful for conservation planning, such as for highway or 
railway crossing structures and areas to target for further habitat 
protections. 

Glossary 

DMA demographic monitoring area for grizzly bears 
iSSF Integrated Step Selection Function 
iSSF score the score derived from the iSSF based on conditional 

selection coefficients for each habitat variable and the habitat 
variables encountered at the site 

iSSF class a factor between 1 and 10, representing relative probability 
of use, such that lowest use is class 1 and highest use class 10 

Log-RSS Log relative selection strength, i.e., the relative selection 
strength between each value of location 1 relative to location 
2, where both locations are assumed to be equally accessible 
and only differ in their values of the covariate of interest 

NCDE Northern Continental Divide Ecosystem for grizzly bears 
NDVI normalized difference vegetation index 
RZ recovery zone for grizzly bears 
Secure core areas >500 m from roads on federal, state, and tribal lands 
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