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Abstract: In the Greater Yellowstone Ecosystem, counts of female grizzly bears (Ursus arctos) with
cubs-of-the-year (females with cubs) from systematic aerial surveys and opportunistic ground sightings
are combined with demographic data to derive annual population estimates. We addressed 2 limitations
to the monitoring approach. As part of a rule set, a conservative distance of >30 km currently is
used as a threshold to assign sightings to unique females with cubs, resulting in underestimation bias.
Using telemetry locations of females with cubs collected during 1997–2019, we created 1,000 data
sets for each of 5 levels of simulated number of females with cubs, simulated sightings by selecting
among these locations, and evaluated the classification performance of alternative distance criteria (12–
30 km). Under all scenarios, 12–16-km criteria maximized classification performance and minimized
estimation bias; the 16-km criterion was optimal for current conditions and sampling efforts. Our second
objective was to test generalized additive models (GAMs) as a flexible trend analysis technique. We
simulated 1,000 time series for each of 10 scenarios (10, 15, and 20% decline over periods of 5, 10, and
15 yrs, plus stability), applied GAMs, and assessed metrics associated with the posterior distribution of
the instantaneous rate of change. We detected declines among >99.6% of replicates under the 15 and
20% decline scenarios and in 84.7–94.7% of replicates under the 10% decline scenario. From decline
onset to first detection, periods ranged from 3.7 (20% decline over 5 yrs) to 11.1 (10% decline over
15 yrs), with 3.9–8.8 years mean duration of detection events. The GAM approach allows detection
of directional changes in population trend, including early warning metrics, and stabilization after
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such changes. Retrospective application of the 16-km distance criterion and GAMs resulted in higher
population estimates and growth rates than are reported using current methods.
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Among bear populations, females with cubs of the year
(hereafter, “females with cubs”) are easily recognizable
and counts for this reproductive segment of the population
are used for population estimation or as ancillary data for
population monitoring (e.g., Knight and Eberhardt 1984,
Palomero et al. 1997). Use of such counts for monitoring
purposes is based on the assumption that trends in this re-
productive segment of the population are correlated with
trends for the population as a whole (Eberhardt et al. 1999,
Interagency Grizzly Bear Study Team 2006, Harris et al.
2007, Ordiz et al. 2007). Listed as a threatened popula-
tion under the U.S. Endangered Species Act (1973, as
amended) since 1975, 1 of 3 demographic recovery crite-
ria established in the grizzly bear (Ursus arctos) recovery
plan for the Greater Yellowstone Ecosystem specifies a
minimum of 48 unique females with cubs annually within
the area where monitoring takes place, the Demographic
Monitoring Area (U.S. Fish and Wildlife Service 2017).
Counts of females with cubs from systematic aerial sur-
veys (twice/year; Jun–Aug) and opportunistic ground and
aerial sightings collected from den emergence through
31 August have provided an important basis for monitor-
ing the Yellowstone grizzly bear population since 1975.
These count data are used by the Interagency Grizzly Bear
Study Team (IGBST; established in 1973 and formalized
via a Memorandum of Agreement in 1974, the IGBST is
a science consortium of Federal, State, and Tribal agen-
cies responsible for monitoring the grizzly bear popula-
tion in the Greater Yellowstone Ecosystem) to estimate
size and trend for this segment of the Yellowstone griz-
zly bear population and, in conjunction with additional
demographic information, the size of the entire popu-
lation. The annual estimation process involves 2 steps.
First, sightings are differentiated into a minimum count
of unique females with cubs using a rule set with cri-
teria primarily based on litter size, time between sight-
ings, and particularly distances among sightings (Knight
et al. 1995). To develop the distance criterion, Knight
et al. (1995) first estimated the mean standard diameter
of annual ranges of females with cubs during 1 May–
31 August (15 km; Blanchard and Knight 1991). They
then doubled this diameter to 30 km (i.e., 2 × 15 km) and

assumed this reflected a conservative estimate of the max-
imum distance between any 2 locations that a female with
cubs would travel during the period from den emergence
through 31 August. They established the rule that sight-
ings of females with cubs lacking any other identifying
characteristics (e.g., litter size) within this distance were
categorized as repeat sightings of the same female and
sightings beyond this distance were categorized as sight-
ings of other females. Cub mortality was always possible,
so no female with fewer cubs was considered distinct in
a particular area unless she was seen on the same day as
another female or unless both were radiomarked. Given
that the population was in an early phase of recovery
and demographic data were limited, these criteria rep-
resented a purposely conservative approach. However,
using simulations, Schwartz et al. (2008) demonstrated
that the Knight et al. (1995) rule set returned increas-
ingly negative-biased estimates as the number of unique
females with cubs increased. With higher grizzly bear
densities currently existing in the Greater Yellowstone
Ecosystem compared with several decades ago (see fig.
1S in Bjornlie et al. 2014), this underestimation bias is
substantial and likely reduces the ability to accurately as-
sess population trend.

The second step in the annual estimation process in-
volves estimating the total number of females with cubs in
the population, including those that have not been sighted.
The nonparametric bias-corrected Chao estimate (Chao
1989) is used to obtain these estimates, which accounts
for individual sighting heterogeneity based on sighting
frequencies. These estimates are referred to as Chao2 es-
timates (NChao2) per Keating et al. (2002) and Cherry et al.
(2007):

NChao2 = m +
(

f 2
1 − f1

)

2 ( f2 + 1)
,

where m represents the count of unique females with cubs
and f1 and f2 represent females with cubs sighted once
and twice, respectively (Chao 1989, Cherry et al. 2007).

Trend for the female with cub segment of the popula-
tion is inferred from the time series of these annual Chao2
estimates. Annual variation in NChao2 is relatively high be-
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Fig. 1. Administrative boundaries relevant to grizzly bear (Ursus arctos) management in the Greater Yellow-
stone Ecosystem, Wyoming, Montana, and Idaho, USA.

cause of the sampling and process variance, so the IGBST
developed and implemented a technique to address un-
certainty in trend estimates and provide smoothed annual
estimates of the number of females with cubs. The tech-
nique involved fitting linear and quadratic regressions to
the time series starting in 1983 and using an information-
theoretic approach to arrive at a model-averaged estimate
for the endpoint of the time series (Harris et al. 2007).
That approach provided a statistical mechanism to eval-
uate a change in trajectory for this population segment
by monitoring the shift in model weight from the lin-
ear to the quadratic model. Although averaging of linear
and quadratic models proved useful to detect a slowing

of population growth in the early 2000s after almost 2
decades of robust growth, the approach has little power to
accurately distinguish among future population scenarios
that may involve periods of decline, stability, or growth
(IGBST 2012, 2021). The 2016 Conservation Strategy
for the Yellowstone grizzly bear population (a guiding
document for management and monitoring of the popu-
lation upon recovery and delisting) specified a manage-
ment objective that reflects the mean population size dur-
ing the period 2002–2014 (Yellowstone Ecosystem Sub-
committee 2016), a period of relative stability after slow-
ing of population growth in the early 2000s (van Manen
et al. 2016). This management approach requires a trend
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monitoring scheme that allows timely detection of any
changes in population abundance.

In this study, we addressed the aforementioned limita-
tions of the current population monitoring approach us-
ing simulation analyses and more flexible modeling tech-
niques. Our objectives were to 1) identify alternatives to
the 30-km distance criterion to produce unbiased counts
of unique females with cubs, and 2) design more powerful
and flexible trend analysis and smoothing techniques for
abundance estimates of females with cubs derived from
those counts.

Study area
The study area encompassed the Demographic Mon-

itoring Area (49,931 km2) of the Greater Yellowstone
Ecosystem, within which demographic criteria for the
Yellowstone grizzly bear population are currently mon-
itored and evaluated (IGBST 2012). This area includes
Yellowstone National Park, Grand Teton National Park,
5 adjacent national forests and other Federal lands, por-
tions of the Wind River Indian Reservation, and State and
private lands in Wyoming, Montana, and Idaho, USA
(Fig. 1). The Greater Yellowstone Ecosystem is char-
acterized by a high-elevation plateau with 14 moun-
tain ranges >2,130 m, containing the headwaters of 3
continental-scale river systems (Missouri–Mississippi,
Snake–Columbia, and Green–Colorado). Summers are
short with average annual precipitation (51 cm) falling
mostly as snow. Vegetation transitions from low-elevation
grasslands through conifer forests at mid-elevations
reaching alpine tundra around 2,900 m. Whereas the abil-
ity to obtain sightings varies depending on terrain fea-
tures and vegetation cover, no trend in sightability was
evident during 1986–2010 based on visual observations
of females with cubs made during telemetry flights (van
Manen et al. 2014).

Methods
Evaluating alternative distance criteria

Simulation framework. We developed a simula-
tion framework to assess the performance of alterna-
tive distance criteria to correctly assign sightings to their
respective true identities (IDs; Fig. 2). Schwartz et al.
(2008) developed a computer algorithm to automate the
application of the Knight et al. (1995) rule set consistent
with its implementation. They then used location data of
radiomarked females with cubs to simulate performance
of the rule set under various hypothetical, but realistic,
levels of “true” abundance of females with cubs. To ac-
complish the latter, they compiled a geospatial data layer

with telemetry locations from multiple bear-years as if
they had all been observed in a single year, and then ran-
domly sampled from this superpopulation of observable
bears. Live-trapping bears for radiomonitoring purposes
is not feasible in some portions of the ecosystem; there-
fore, sets of known telemetry locations of females with
cubs were placed on the data layer to populate areas in
which few radiomarked females had been located but
that were known to be occupied by adult female bears
(Schwartz et al. 2008). The result was a representative
distribution of bear locations for simulations to evaluate
the Knight et al. (1995) rule set, with the goal of produc-
ing realistic inter-sighting distances and associated dates
and times as crucial components of the rule set. They then
took repeated samples (n = 500 simulations) of 10, 20,
40, 80, and 100 true females with cubs from this super-
population to represent variability in samples obtained by
chance through the sampling protocol.

For this study, we built on the general approach of
Schwartz et al. (2008). We used aerial telemetry loca-
tions (1 May–31 Aug; individual bears located every 10–
14 days) and ground sightings (prior to 31 Aug) of ra-
diocollared females with cubs collected annually during
1997–2019 (Supplemental Materials, Fig. B.1). This data
set was more recent compared with Schwartz et al. (2008)
and enabled us to evaluate potential changes over time.
Following the approach of Schwartz et al. (2008), we cre-
ated 1,000 simulated data sets with true population sizes
of females with cubs at each of 5 plausible levels (Ntrue =
50, 60, 70, 80, and 90). We chose 50 as our minimum Ntrue

to reflect the demographic recovery criterion of 48 unique
females with cubs mentioned previously. We varied the
total number of simulated sightings for each replicate as
a ratio of Ntrue, based on empirical ratios of total sightings
(n) and NChao2 estimates for the period 1997–2019 (total
sightings:unique females with cubs [n/NChao2]; mean =
2.3, range = 1.5–3.2). For simulated sightings, we re-
tained the empirical day, month, time, and coordinate
values from the telemetry data.

For each replicate, we allowed only 1 sample-year (1
sample-year = 1 year of location data for 1 female with
cubs) to be chosen for any female with multiple years of
data to prevent unrealistic spatial overlap (Schwartz et al.
2008). Similarly, our location sample spanned >20 years,
so spatial overlap among different individuals could oc-
cur that is unrealistic. For example, if a female died and
her home range was later occupied by a different female,
randomly selecting both individuals may create an un-
realistic dyad for evaluation of distance criteria. There-
fore, when selecting individuals, we required the activity
center of a newly selected candidate female to be �1 km
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Fig. 2. Flow chart of analyses designed to evaluate and enhance techniques for monitoring the Yellowstone
grizzly bear (Ursus arctos) population in the United States. See Results section for referenced figures and
tables. See Supplemental Materials for Fig. B1.

from any activity center of a female previously selected
while still allowing 2 simulated females to have a high
degree of spatial overlap.

Litter size is also used in the clustering algorithm to
distinguish sightings of unique females. Thus, we ran-
domly assigned litter size to the earliest sighting of each
female using discrete inverse transformation sampling
(Devroye 1986) of empirical litter size data for the period
1997–2019 (Haroldson et al. 2020). We then simulated
changes in litter size caused by cub mortality by applying
estimated daily cub survival rates (IGBST 2012) to the
number of days between simulated sightings of the same
female. We censored simulated sightings if complete lit-
ter loss occurred because actual counts do not include
females without cubs.

In field conditions, when observed females with cubs
are radiomarked and are individually identified with
telemetry, this information is included in the cluster-
ing algorithm and increases algorithm accuracy because
these individuals cannot be misidentified (Schwartz et al.
2008). To simulate collared females with cubs, we as-
signed an identifier to a proportion of the females as being
radiomarked in each replicate, based on a random sam-
ple from the distribution of empirical radiomonitored fe-
males with cubs on an annual basis (1997–2019; range =
3–13/yr).

Our simulation framework was designed to directly
compare a true number of sighted bears with the estimate
of m, but was not designed to test the efficacy of the

Chao2 adjustment (i.e., ( f 2
1 − f1 )

2( f2+1) ). Thus, unsighted females
were not simulated; therefore, inferences about NChao2

are based on the premise of correctly assigning f1 and f2
sighting frequencies (i.e., the simulated f1 and f2 counts
correctly capturing the Chao2 adjustment; Keating et al.
2002, Cherry et al. 2007, Schwartz et al. 2008).

Analysis. To assess the accuracy of different dis-
tance criteria, we used the computer program of Schwartz
et al. (2008) to cluster sightings into individuals, by vary-
ing the distance threshold from 12 km to 30 km in 2-km in-
tervals (i.e., 10 distance criteria) and holding all other pa-
rameters the same, including setting the spatial extent to
the Demographic Monitoring Area. We chose 12 km as a
lower bound for the range of distance criteria, based on the
original 15-km annual home-range diameter documented
by Knight et al. (1995) and more recent findings from
Bjornlie et al. (2014), indicating that female home ranges
in areas with higher bear densities have decreased in size.
This approach resulted in 50,000 output data sets, with
1,000 simulated data sets of females with cubs for each
of the 10 distance criteria and the 5 levels (Ntrue = 50, 60,
70, 80, and 90) of females with cubs (5 population levels
× 10 distance criteria × 1,000 replicates each = 50,000).
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6 YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al.

We evaluated classification performance and bias as-
sociated with the 10 distance criteria at the unique ID
level and the sighting level, allowing us to examine how
assignments influenced the 2 components of the Chao2
equation. Accurate counts of m influence the primary and
largest component of the equation. Accurate assignment
of f1 and f2 sighting frequencies to each female ID influ-

ences the Chao2 adjustment ( ( f 2
1 − f1 )

2( f2+1) ; Chao 1989, Cherry
et al. 2007). Rather than evaluate strict accuracy of as-
signments, which would not indicate whether false nega-
tives or false positives were more common, we evaluated
classification performance by considering precision and
recall (Lever et al. 2016). At the unique ID-level, we com-
pared the presence or absence of unique IDs of females
with cubs in the simulation (true IDs) with modeled out-
put (predicted IDs). This involved 3 distinct outcomes: 1)
true positive (true ID correctly predicted); 2) false positive
(ID erroneously predicted to be present when sightings
of a single true ID are split into multiple IDs); and 3)
false negative (failure to predict true ID because multiple
IDs are combined into a single ID). The true number of
unique IDs is the sum of those correctly classified (true
positives), plus those that were missed (false negatives).
Only when the number of false positives equals false neg-
atives are the correct numbers of unique IDs predicted.
We used the Fβ score, which is an aggregative perfor-
mance metric of precision ( true positive

true positive + false positive ) and re-

call ( true positive
true positive + false negative ). The Fβ score is bounded by

0 and 1, with higher values indicating better classifica-
tion performance (Lever et al. 2016). The parameter β

controls the balance of precision and recall, which we set
to 1 for equal balance. At the sighting level, we assessed
assignment of sightings to their respective true IDs by us-
ing a multiclass confusion matrix (Grandini et al. 2020).
For multiclass classification where each observation can
only be assigned to a single class label (i.e., female ID),
average precision = recall = Fβ score. Therefore, we used
mean Fβ scores to summarize classification performance
at the sighting level.

To assess the likelihood of overestimation at the unique
ID level, we calculated the proportion of simulations
with positive bias >5 and >10% of Ntrue, the Chao2-
adjustment value, and the resulting Chao2 estimates. Sim-
ulated data sets showed a strong positive correlation be-
tween the f1:f2 ratio and the Chao2 adjustment component
in the Chao2 equation at all Ntrue levels (Spearman’s rank
r̄s = 0.93, σ = 0.01). Therefore, we estimated the true
and predicted adjustment component of the Chao2 equa-
tion to quantify bias at the sighting level because it is
the direct application of f1 and f2 counts, and interpreta-

tion in terms of Chao2 units is intuitive. We focused that
analysis on the 3 top-performing distance criteria and,
for comparison, the original 30-km criterion. We also fo-
cused on Ntrue levels of 60 and 70 unique females with
cubs because empirical estimates of m based on the 30-km
criterion and total sightings for 2001–2019, when linked
to simulation results, suggest this range was most relevant
to contemporary conditions (Supplemental Materials,
Appendix A).

Evaluating performance of generalized additive
models

Simulation framework. We used another simu-
lation framework, separate from the previous analysis,
to create realistic variation in trends of annual NChao2

estimates (Fig. 2). Given that the 2016 Conservation
Strategy specified a management objective that reflected
the mean population size during the period 2002–2014
(Yellowstone Ecosystem Subcommittee 2016), we de-
veloped data sets to simulate a stable population expe-
riencing a decline followed by a return to stability. We
varied magnitude (10, 15, and 20%) and duration (5, 10,
and 15 yrs) of the decline periods to reflect grizzly bear
biology and the management approach. The combined
duration × magnitude effect sizes correspond to constant
population growth rates (λ) during decline years, rang-
ing from 0.956 (20% decline over 5 yrs) to 0.993 (10%
decline over 15 yrs; Supplemental Materials, Table B.1).
We also included a null scenario of zero growth (λ = 1.0).
Although we only simulated population declines to keep
our analyses focused, we note that the ability to detect
population increases is just as relevant to monitoring of
the Yellowstone grizzly bear population. The flexibility
of GAMs means that model performance would be the
same and results would be equally applicable for equiv-
alent scenarios of population increase.

To simulate annual NChao2 values, we added “residual-
noise” to the deterministic trends shown in Table B.1
(Supplemental Materials) with the goal of approximat-
ing process and sampling variance present in observed
NChao2 estimates. We used the empirical residuals from
a regression of NChao2 ∼ year from 2000 to 2018 data to
parameterize residual noise and assumed a relatively sta-
ble true population during this period with noise equally
distributed in positive and negative directions. We ex-
tracted the residuals from the regression and used their
statistical properties (e.g., autocorrelation, standard de-
viation) to simulate an auto-regressive time series using
the arima.sim() function in Program R (R Core Team
2019). We scaled simulated residuals by dividing by
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YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al. 7

the deterministic value (mean value of empirical NChao2

estimates for 2000–2018; NChao2 = 55.8). This allowed
us to use the same simulated time series of noise for each
scenario, regardless of the deterministic values. Scaled
residuals were subsequently “unscaled” by multiplying
by the deterministic time series value and adding it to the
deterministic value to create stochastic time series.

We simulated 1,000 replicate time series of 75 years
for each of the 10 scenarios (i.e., 1 null and 9 treatment
scenarios). This period length allowed for stabilization, or
“burn-in,” time before the start of the decline period, and
a postdecline stable period. We started declines in year 31
of the simulation. Stochastic noise of the simulated NChao2

values resulted in variation across simulations leading up
to the decline period (i.e., sometimes higher than deter-
ministic values, sometimes lower), which added a realis-
tic variance component to the simulations. To account for
the observed increase of the empirical NChao2 estimates
for the Yellowstone grizzly bear population through the
early 2000s (IGBST 2012), we set the first 10 years of
each simulation to be an increasing linear trend, thus re-
quiring the GAM models to make an initial “turn” from
increasing to stable deterministic trends. Only contem-
porary trends are the target of our GAM application, so
we chose a generic increase to challenge the model but
were less concerned with exactly matching the empiri-
cal data for these first 10 years of the simulations. Thus,
simulations started with a “burn-in” of 10 years of in-
crease plus 20 years of stable population size, followed
by a population decline lasting 5, 10, or 15 years and then
a postdecline stable period of up to 40, 35, and 30 years,
respectively.

Model parameterization. For each monitoring
year of a simulation scenario, we fit a GAM to annual
NChao2 estimates (NChao2t ):

NChao2t = β0 + f (yeart ) + εt ,

where f is a smooth function of the covariate year from
t = 1 to the current monitoring year and εt is a vector
of error terms. We fit a similar model to 3-year mov-
ing averages of annual NChao2 estimates (NChao23t̄ ). We fit
models with the mgcv package (Wood 2004) in Program
R and evaluated model performance using raw and 3-year
simple moving average (x̄3) of simulated NChao2 values.
We chose to include the moving average based on ex-
ploratory work and previous research showing that any
reduction in sampling variance would increase power to
detect trends (Harris et al. 2007). Although use of sim-
ple moving averages lags the data by half the size of the
sample window (e.g., 1.5 yrs in our application) and de-
lays the onset of changes in the input signal, the reduc-

tion in the signal-to-noise ratio generally outweighs this
lag effect in model performance. Moving averages in-
crease autocorrelation in the time series that could lead
to overfitting if not accounted for; therefore, we modi-
fied the default GAM parameterization to protect against
overfitting by upscaling the spline penalization. To pro-
vide a reasonable time-series for fitting models, we be-
gan model-fitting in simulation year 25 with 5 years of
pre-impact before deterministic trends started. For each
simulated monitoring year, we fit a GAM with NChao2 or
its 3-year moving average as the response variable and
year as the predictor variable. Use of fitted models fol-
lowed existing monitoring protocols of using only the
monitoring year, or last year of a fitted model, for inter-
pretation and not back-correcting estimates of previous
years as time advances and more data become available.
To account for the presence of autocorrelation in the data
and protect against overfitting, we increased the effec-
tive degrees of freedom penalty by 30% (γ = 1.3). This
produced a smoother fit (Kim and Gu 2004; Wood 2006,
2017) and balanced overfitting protection while still al-
lowing the smoother to respond nonlinearly to changes
in trend. Failure to account for such dependencies in the
NChao2 values could lead to overly complex model fitting
and a greater probability of false-positive results (Simp-
son 2018). Following Wood (2011) and Simpson (2019),
we used restricted maximum likelihood for parameter es-
timation. We set the smoother function to use univariate
penalized cubic regression splines (Wood 2017).

Model outputs and inference. For each monitor-
ing year (n = 50) and simulation replicate (n = 1,000),
we fit GAMs and used the methods of Simpson (2018)
to generate and store 1,000 posterior distributions of
the smoothed NChao2 estimates and the first derivatives
f′(yeart), or slopes, as a measure of the instantaneous rate
of change (Supplemental Materials, Appendix C). We
used the variation of estimated slopes from the control
(no decline) scenario simulations to optimize the α-level
based on rates of false-positive events, defined by first
derivatives being significantly different from zero.

We calculated model bias as the mean absolute error
of smoothed estimates (i.e., predicted GAM values) for
each monitoring year at the replicate level. We selected
mean absolute error over the more conventional root
mean squared error because it retains the directionality of
bias (positive vs. negative). We calculated this metric as
follows:

mean absolute errort = fitted NChao2t

− deterministic NChao2t ,
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8 YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al.

where fitted NChao2t and deterministic NChao2t are the me-
dian of the smoothed NChao2 posterior distribution and the
simulated deterministic NChao2 values, respectively, asso-
ciated with year t. We output 3 metrics associated with
the GAM first derivatives (f′(year)) that might be used to
interpret trend. The first was the median of the posterior
distribution as the point estimate for trend. The second
was the proportion of the posterior distribution that was
<0, representing the probability of decline (pd). The third
was “trend state,” for which we assigned a state of decline
for years when (1 −α) confidence intervals of first deriva-
tives were different from zero and a state of no decline
for years when the confidence interval contained 0.

Quantifying results across replications is challenging
because measures of central tendency are relevant to the
annual and replicate level. At the annual level, results
reflect the average dynamics for a given year but do
not account for time dependency present within a time
series of a single replicate. Therefore, we also consid-
ered replicate-level results and explicitly accounted for
the time dependency of each entire time series (i.e., any
trend among annual data within each replicate, represent-
ing how monitoring data are used in practice) by using an
indicator variable for “trend state.” We defined detection
of a decline event as �2 consecutive years in the decline
state. For each scenario, we estimated the proportion of
simulations where a decline event was detected, the lag
(yrs) between the start of the decline and its detection,
and the length of the detection event (yrs).

Results
Evaluating alternative distance criteria

Summary of simulation data. The simulated
sighting data to evaluate alternative distance criteria con-
tained 1,139 locations of females with cubs, representing
117 unique bears (Supplemental Materials, Fig. B.1). For
some individual females, we had multiple years of loca-
tion data while accompanied by cubs, resulting in 154
sampling years. The number of simulated sightings per
unique female varied from 1 to 36 (x̄ = 7.4, σ = 4.1).
Median distance between simulated sightings within the
same individual averaged 9.1 km (σ = 5.9 km), ranged
from 0.2 to 37 km, and lacked evidence of directional
trend during 1997–2019 (β = −0.05, P = 0.49, adjusted
R2 = −0.004). The median diameter of the smallest circle
encompassing all simulated sightings for unique individ-
uals was 16.4 km, with 86% of individuals’ minimum
diameter <30 km; no trend was evident over the period
1997–2019 (β = −0.24, P = 0.16, adjusted R2 = 0.007).

The average distance from each individual’s centroid
location to that of their nearest neighbor’s centroid de-
creased with increasing number of unique females (e.g.,
x̄50 = 13 km, σ50 = 8.6; x̄90 = 9.2 km, σ90 = 6.4; subscript
represents Ntrue level).

The number of nearest neighbors with centroids within
30 km also increased with Ntrue levels, showing an 81%
increase from 50 to 90 unique females (x̄50 = 3.8, σ50 =
2.3; x̄90 = 6.9, σ90 = 3.6). The spatial extent of the sam-
pling frame (i.e., Demographic Monitoring Area) was
fixed across all simulation replicates, so these patterns
reflect increasing density of simulated females as Ntrue

increases. Additional summary statistics are in Supple-
mental Materials, Appendix D.

Evaluation of alternative distance criteria. At
the unique-ID level, mean Fβ scores were highest at dis-
tance criteria between 14 and 18 km (Fig. 3 left panel),
whereas mean bias was minimized between 12 and 16 km
(Fig. 3 right panel). The top-performing distance criteria
for both measures decreased with increasing Ntrue level,
but those maximizing classification performance (Fig. 3
left panel) did not always match those minimizing bias
(Fig. 3 right panel). However, the top-performing crite-
ria were always within 1 distance increment (e.g., 14 vs.
16 km); differences in mean Fβ scores were within 1%
of each other and differences in mean bias were �5% of
the Ntrue.

At the sighting level, mean Fβ scores were lower than
the unique-ID level, although patterns related to distance
criteria were similar (Fig. 4 left panel). Top-performing
distance criteria ranged from 12 to 16 km for classifica-
tion and bias, with smaller distance criteria performing
better with increasing Ntrue. Differences between mean
Fβ of the top-performing distance criteria and its closest
competitors were small (Fig. 4). Distance criteria showed
distinct and consistent pattern across all Ntrue levels, with
effects over the range of distance criteria (12 vs. 30 km)
outweighing effects within distance criteria over the range
of Ntrue (Fig. 4 right panel). Again, this assessment of bias
in the Chao2 adjustment is reflective of the bias relative
to the simulated frequencies (i.e., perfect clustering of
all locations assigned to the correct unique ID), not bias
associated with females not observed.

Correlations between the bias in m and the bias in
Chao2 adjustment were moderate (rs = 0.44–0.70) but
strengthened with increasing numbers of simulated fe-
males with cubs (Fig. 5). Scatterplot patterns indicated
the relationship between bias in m and the Chao2 ad-
justment were similar across different distance criteria
within levels of Ntrue. However, distance criteria in the
12–16-km range best minimized bias of both m and the
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YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al. 9

Fig. 3. Classification performance at the unique ID-level shown by (left panel) Fβ score and (right panel)
predicted bias in the number of unique females (m bias) based on simulations applying varying distance
criteria to the Knight et al. (1995) rule set to identify unique female grizzly bears (Ursus arctos) with cubs
from sightings. For each Ntrue level, distance criteria range from 12 to 30 km in 2-km steps (indicated by color
gradient and arranged from left to right). Each boxplot summarizes n = 1,000 simulated data sets.

Chao2 adjustment (Fig. 5). The range of bias in the Chao2
adjustment for unbiased ranges of m highlights the addi-
tional challenge of simultaneously estimating the f1 and
f2 sighting frequencies compared with only m. For exam-
ple, for distances of 12 km to 16 km, even when m was
predicted with reasonable accuracy (e.g., within ±2 fe-
males with cubs of the true value), although mean bias of
f1 and f2 sighting frequencies was low, individual repli-

cates varied from −10 to 13 for f1 and −17 to 14 for
f2 (Fig. B.2). These biases were negatively correlated,
and overestimation of f1 generally corresponded to un-
derestimates of f2 and a positive bias in the adjustment
component of NChao2, whereas underestimation of f1 cor-
responded to overestimation of f2 and a negative bias in
the Chao2 adjustment (Fig. B.2). Despite the challenges
of simultaneously reducing bias of m, f1, and f2 estimates

Fig. 4. Classification performance at the sighting level based on simulations applying varying distance cri-
teria to the Knight et al. (1995) rule set to identify unique female grizzly (Ursus arctos) bears with cubs from
sighting. (left panel) Fβ score and (right panel) predicted bias (predicted−simulated; expressed as no. of fe-

males with cubs) in the Chao2 adjustment ( ( f 2
1 − f 1 )

2( f2+1) ) of the Chao2 equation. For each Ntrue level, distance criteria
range from 12 to 30 km in 2-km steps (indicated by color gradient and arranged from left to right). Each boxplot
summarizes n = 1,000 simulated data sets based on micro-averaged Fβ scores.
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10 YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al.

Fig. 5. Relationships between bias (expressed as no. of unique females with cubs) in the parameter m and
bias in the Chao2 adjustment (i.e., NChao2 − m) of the estimator based on simulations (n = 1,000 replicates for
each combination of distance criterion and Ntrue level), applying varying distance criteria to the Knight et al.
(1995) rule set to identify unique female grizzly bears (Ursus arctos) with cubs. Results are shown for distance
criteria of 12, 14, and 16 km (columns) within each of 3 simulated levels of true females with cubs (Ntrue = 50,
70, and 90; rows). Blue contour lines represent 50th, 75th, and 90th isopleths, respectively.

at smaller distance criteria, improvements relative to the
30-km rule set were substantial. For example, even at the
lowest Ntrue level of 50, where the 30-km distance crite-
rion performed best, differences between 30 and 16 km
were large: mean bias of m, f1, and f2 using the 16-km dis-
tance criterion were −0.6, −0.1, and −0.4, respectively,
but for the 30-km criterion were −11.6, −8.7, and −5.3,
respectively.

The proportion of simulations with positive bias >5 or
>10% of Ntrue indicated trade-offs among distance crite-

ria for minimizing mean bias while also reducing risk of
overestimation (Table 1). This pattern was similar for m,
the Chao2 bias adjustment, and overall Chao2 estimates,
but most distinct for the latter.

Evaluating performance of generalized additive
models

Model performance. Monitoring year estimates
for the NChao23t̄ model under the null model scenario
(i.e., no simulated decline) were unbiased, with >85% of
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YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al. 11

Table 1. Measures of bias for top-ranking (12–16-km) and reference (30-km) distance criteria for simulations
where Ntrue = 60 and 70 female grizzly bears (Ursus arctos) with cubs and total sightings within the empirical
range of n � 165. Results are based on 1,000 simulation replicates for each combination of distance criterion
and Ntrue level using the Knight et al. (1995) rule set to identify unique females with cubs from sightings. (A)
m bias (no. of unique females with cubs), and proportion of simulations >+5 and >+10% of Ntrue. (B) Chao2-
adjustment bias, and proportion of simulations >+5 and >+10% of mean known Chao2 adjustment (simulation
estimate). (C) Chao2 bias, and proportion of simulations >+5 and >+10% of mean known Chao2 (simulation
estimate). The 5% adjustment of the known Chao2 was approximately 3.6 (Ntrue = 60) and 4.4 (Ntrue = 70).

(A) m bias

Distance criterion Ntrue Mean bias Proportion, bias >+5% Ntrue Proportion, bias >+10% Ntrue

12 60 3.7 0.53 0.30
70 0.4 0.21 0.04

14 60 –0.4 0.19 0.04
70 –4.3 0.03 0.00

16 60 –3.9 0.03 0.00
70 –8.3 0.00 0.00

30 60 –16.9 0.00 0.00
70 –23.4 0.00 0.00

(B) Chao2-adjustment bias

Distance criterion Ntrue Mean bias Proportion, bias >+5% Ntrue Proportion, bias >+10% Ntrue

12 60 4.6 0.60 0.39
70 1.9 0.41 0.23

14 60 0.3 0.35 0.14
70 –3.1 0.18 0.06

16 60 –3.0 0.14 0.04
70 –7.0 0.08 0.01

30 60 –9.6 0.00 0.00
70 –14.5 0.00 0.00

(C) Chao2 bias

Distance criterion Ntrue Mean bias Proportion, bias >+5% Ntrue Proportion, bias >+10% Ntrue

12 60 8.3 0.69 0.59
70 2.3 0.48 0.31

14 60 –0.2 0.39 0.24
70 –7.4 0.12 0.05

16 60 –6.8 0.12 0.04
70 –15.2 0.03 0.00

30 60 –26.5 0.00 0.00
70 –37.9 0.00 0.00

monitoring years (n = 50,000) within 2 NChao2 units from
the deterministic, or true, NChao2 value (mean absolute er-
ror = 0.029; σ = 1.33). The NChao2t model showed a slight
positive bias under the null model scenario (mean abso-
lute error = 0.484, σ = 1.33). These differences occurred
mostly during the pre-impact phase and were associated
with larger lag effects because of higher variance in the
annual NChao2t values subsequent to the initial increase
prior to stabilization. For the 9 treatment scenarios, the
fitted bias varied as a function of the interaction of effect
size and duration. General patterns in bias reflected the
lag time required for models to distinguish declines from
annual variation in NChao2. Smoothed estimates during the
decline were positively biased and bias increased with

the size and steepness of simulated declines. Similarly,
during the postdecline stabilization period, there was a
transition to a period of negative bias when responding to
the change from decline to stabilization. Compared with
the NChao2t models, variance reduction associated with the
3-year moving averages of the NChao23t̄ models resulted in
less bias during impact phases and faster returns during
the subsequent stable period with bias levels equivalent
to the null model scenario (Fig. 6).

Trend detection. We present trend detection re-
sults only for the NChao23t̄ model because of its smaller
bias compared with the NChao2t model. For all scenarios,
the annual probability of decline, pd, increased within
the first 2–3 years of the decline period, indicating that
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12 YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al.

Fig. 6. Mean absolute error (MAE) for NChao2t (annual; blue) and NChao23t̄
(3-yr moving average; red) fitted

estimates of female grizzly bears (Ursus arctos) with cubs as a function of simulation year. Columns show
magnitude of the impact (large = 20%, medium = 15%, small = 10% decline) and rows show duration of impact
period (long = 15 yrs, medium = 10 yrs, short = 5 yrs). Dashed vertical lines indicate the start and end of the
impact period and dashed horizontal line indicates reference bias of 0.

existence of a declining trend was rapidly detected.
Temporal dynamics based on median pd values closely
tracked the different scenarios, with shorter durations and
larger magnitudes resulting in faster shifts and larger
probabilities. Peak values for annual medians ranged
from 0.845 (decline = 10% over 15 yrs; λ = 0.993) to
0.999 (decline = 20% over 5 yrs; λ = 0.956). On aver-
age, median pd values reached maximum levels within 3
years of the end of the decline period for all durations of
decline, except for the short duration of 5 years, which
reached maximum values 1 or 2 years after completion
of the decline period (Fig. 7). This pattern reflects that
changes postdecline were more pronounced with shorter
impact periods because it is difficult for models to fully
capture these rapid dynamics.

At the annual level, all impact scenarios except for
the most gradual decline (10% over 15 yrs; λ = 0.993)
showed support for significant negative slopes when av-
eraged across replicates (Fig. 7). Although the scenario of

10% decline over 15 years lacked power to detect slope
significance, it is unlikely that trends would go unde-
tected. For example, during the simulated decline phase,
median posterior slope estimates were less than the pre-
vious year’s estimates during 56% of simulation years,
and the number of consecutive years under this pattern
(current year’s slope < previous year’s slope) averaged
4.5 years. When coupled with inference on the probabil-
ity of decline, pd, which averaged 0.72 during the impact
period, the temporal trends provide substantial additional
inference of changing conditions despite the lack of sta-
tistical significance.

Summarizing results at the replicate level using the
state variable of decline versus no decline for each year
of a time series, detection of simulated declines was high,
with declines detected in >99.6% of replicates under the
medium (15%) and large (20%) decline scenarios. For
small magnitude scenarios (10%), declines were detected
in 84.7% (15-yr duration) to 94.7% (5-yr duration) of
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Fig. 7. Trend dynamics for NChao23t̄
first derivative (slope) posterior distributions of number of female grizzly

bears (Ursus arctos) with cubs, for 9 treatment scenarios. Columns show magnitude of the impact (large =
20%, medium = 15%, small = 10% decline) and rows show duration of impact period (long = 15 yrs, medium =
10 yrs, short = 5 yrs). Black dashed lines indicate the start and end of the simulated decline periods. Density
strips associated with each year reflect the distribution of posterior medians across replicates (n = 1,000). The
width of each density strip reflects the average pd value, scaled such that pd = 1.0 is reflected by adjacent
years having no space between their density strips. Color gradient indicates the proportion of simulations (n =
1,000/scenario) in a decline “state” where confidence intervals for �2 consecutive years do not contain zero.

replicates. The mean number of years from decline onset
to year of first detection ranged from 3.7 (20% decline
over 5 yrs) to 11.1 (10% decline over 15 yrs), and mean
detected duration of events (i.e., consecutive years in de-
tect state; range = 3.9–8.8 yrs) was correlated with in-
teraction of decline duration × magnitude (Table 2). Pat-
terns for detecting the return to stabilization postdecline
were similar to decline detection and symmetrical around
the peak support for decline for the 15- and 10-year de-
cline scenarios (Fig. 7). Five-year scenarios showed slight
asymmetry around the peak, with a longer and more lin-
ear return toward negligible levels. For all scenarios, re-
bounding trends were evident well before state transition

from decline to no decline occurred, based on the rela-
tive change in pd and sustained increases in the median
posterior distribution (Fig. 7).

Discussion
Our goals for this study were to enhance techniques

for estimation and trend analysis of the number of fe-
male grizzly bears with cubs, which provides an impor-
tant component for monitoring and management of the
Yellowstone grizzly bear population. In the first part of
our study, we addressed a previously documented un-
derestimation bias due to application of a conservative,
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14 YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al.

Table 2. Change detection metrics for 9 scenarios of decline for simulated time series of NChao2 estimates of
female grizzly bears (Ursus arctos) with cubs, based on significance of first derivative of generalized additive
models and 3-year simple moving averages (NChao23t̄

). We simulated 1,000 replicate time series for each sce-
nario, each with a length of 75 years and with population decline starting in year 31 of the simulation. Detection
of the decline event was defined as �2 consecutive years with first derivatives statistically different from 0.
Mean and standard deviation (SD) for lag to detect reflect the number of years post–simulation decline before
a detection and its variation. Mean length of detection events represent the mean number of consecutive years
in each event and the mean slope estimate gives an indication of effect size.

Decline durationa
Decline

magnitudeb
Proportion with

detected declines
Mean lag to
detect (yrs)

SD lag to
detect

Mean duration of
detection event
(consecutive yrs
in detect state)

Mean slope
estimate (first

derivative) at first
detection

Long Large 1.00 6.91 2.54 8.29 − 0.75
Long Medium 0.99 8.74 3.80 5.76 − 0.64
Long Small 0.85 11.05 5.45 3.88 − 0.53
Medium Large 1.00 5.36 1.71 8.83 − 0.92
Medium Medium 1.00 6.53 2.49 6.76 − 0.74
Medium Small 0.90 8.66 4.51 4.33 − 0.60
Short Large 1.00 3.65 1.09 7.80 − 1.21
Short Medium 1.00 4.36 1.48 6.92 − 0.93
Short Small 0.95 6.02 3.70 4.70 − 0.70

aLong = 15 yrs, medium = 10 yrs, short = 5 yrs.
bLarge = 20%, medium = 15%, small = 10%.

30-km distance threshold to identify sightings as
belonging to unique females with cubs. Our simulations
indicated that distance criteria <30 km increased clas-
sification accuracy and reduced bias associated with m
and the Chao2 adjustment to m. Top-performing distance
criteria varied with the number of unique females with
cubs being simulated (Ntrue), the number of sightings (n),
and their ratio (n/Ntrue). Distance criteria in the range of
12–16 km minimized bias and maximized classification
performance at the unique ID and sighting levels un-
der all simulation scenarios. Considering our objective
to reduce underestimation bias while limiting the risk of
overestimation, selecting a single optimal distance crite-
rion from within the 12–16-km range requires additional
considerations.

The 16-km distance criteria exhibited little bias with
low risk of overestimation. On average, use of the 16-km
criterion underestimated m by −3.9 (Ntrue = 60) to −8.3
(Ntrue = 70) females, and overestimated m by >5% in
only 3% (Ntrue = 60) and 0% (Ntrue = 70) of simulations.
Although the 14-km distance criterion was less biased
on average, it had higher proportions of simulations with
>5% bias (Table 1A). The Chao2 adjustment to m was
also unbiased at the 16-km distance criterion, under the
assumption that the true classification (simulated sight-
ings) produced the correct NChao2 to account for females
not seen (Keating et al. 2002, Cherry et al. 2007, Schwartz
et al. 2008). Using the benchmark of 5% of the mean
simulated Chao2 estimates, the proportion of simulated

Chao2 adjustments based on the 16-km distance criterion
exceeded this benchmark in fewer than 14% (Ntrue = 60)
and 8% (Ntrue = 70) of simulations (Table 1B). Finally,
the combined estimation bias of m and the known Chao2
adjustment averaged −6.8 (Ntrue = 60) and −15.2 (Ntrue =
70) using the 16-km distance criterion. These represent
26% and 40% reductions in the Chao2 bias compared
with the 30-km rule set of −26.5 (Ntrue = 60) and −37.
9 (Ntrue = 70), respectively. When total annual sightings
were restricted to the empirical range (n < 165; Supple-
mental Materials, Appendix A), the 16-km-based Chao2
estimates remained conservative, with biases exceeding
the 5% benchmark (+3.6 and +4.4) in fewer than 12%
(Ntrue = 60) and 3% (Ntrue = 70) of simulations (Table
1C). Higher numbers of females with cubs may occur in
the future, and we expect this would result in more annual
sightings. Such a change would be gradual and become
apparent in the monitoring data. Under such conditions,
it may be necessary to reevaluate whether a shift in the
optimal distance criterion is warranted. However, under
current sampling regimes our simulations indicate the 16-
km distance criterion provides an unbiased estimate of fe-
males with cubs, while reducing risk of overestimation.
Hence, we recommend implementation of the 16-km dis-
tance criterion in the rule set and Chao2 estimation.

Previous efforts to address the same underestimation
bias that motivated our study involved the use of a latent
multinomial model with mark–resight data of females
with cubs (Higgs et al. 2013). The mark–resight estimates
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produced unbiased estimates of females with cubs, but
precision was low (e.g., 95% interquartile for 2019 mark–
resight was 37–114; Haroldson et al. 2020). Based on
Peck (2016), who used simulations to investigate the abil-
ity of the mark–resight technique to detect changes in
trend, the technique was deemed insufficient for effective
monitoring of population trend (Haroldson et al. 2017).
However, collection of mark–resight data continued be-
cause it provided unbiased estimates. Estimates of fe-
males with cubs using the 16-km distance criterion (Fig.
8A) align closely with estimates based on mark–resight
data (Haroldson et al. 2020). The mark–resight data are
independent from the female with cub sightings, thus sup-
porting our conclusion that the 16-km distance criterion
improves the accuracy of Chao2 estimates.

Using telemetry data of females with cubs from differ-
ent European brown bear populations, Ordiz et al. (2007)
developed distance–time criteria to identify unique fe-
males with cubs and establish minimum estimates. They
found that prior to 1 July, 2 observations of females with
cubs 30 days apart were unlikely to be of the same fam-
ily group if >13 km apart in Sweden and >15 km and
>7 km apart for released and native bears, respectively,
in southern and central Europe. Our finding that 16 km
represents a reliable threshold as a distance criterion is in
line with those results, particularly considering that our
analyses apply to a longer time period (den emergence
through 31 Aug). Distance criteria to identify unique fe-
males with cubs have been applied other brown bear pop-
ulations, most notably in Spain (Palomero et al. 1997,
2007). However, females with cubs are not commonly
used as the primary sample unit to study and monitor
demographics of bear populations; low sightability asso-
ciated with terrain and vegetation characteristics is often
a limiting factor to effective application. Where sighta-
bility is not a limitation, our results indicate that accurate
minimum counts or estimates of females with cubs can
be obtained if optimal distance criteria to assign sightings
to unique individuals can be identified. When telemetry
data are available, simulations similar to those we present
here can be helpful to fine-tune such distance criteria.

Simulations of Chao2 time series indicated that GAMs
effectively addressed the limitations of model-averaging
for estimation and trend detection of the Yellowstone griz-
zly bear population. Furthermore, applying GAMs within
a more robust statistical framework to assess population
trend substantially enhanced inference. This framework
not only improved trend detection but also provided early
indication of impending change or return to previous
state. Together, the pd, point estimate, and state variables
indicating decline or no decline provide a comprehensive

set of tools for interpreting and communicating NChao2

trends. For example, when confidence intervals indicated
a slope different from 0, relative differences in pd and
slope estimates indicated more detailed temporal dynam-
ics, such as whether the current-year estimate is past the
peak of a decline and returning to nonsignificant slopes.

As expected, models showed bias associated with peri-
ods of change. However, this was not because of an inher-
ent bias of the GAMs, but limitations due to high annual
variation in NChao2 estimates and only using the moni-
toring year of a fitted model for inference (Harris et al.
2007). Statistical advancements alone cannot overcome
these limitations and these biases are inherent in monitor-
ing female grizzly bears with cubs from sightings (Brodie
and Gibeau 2007). Biases showed predictable patterns
relative to fitted slope estimates and duration of declines,
which can aid in interpretation of model results.

Posterior inferences of the first derivative slope esti-
mates were responsive to all decline scenarios, and de-
tected change during almost all of 15% and 20% decline
scenarios. For the smallest declines (10%), high detection
rates (�90%) were achieved within the first few years
after the onset of decline for all but the most gradual de-
cline (15 yrs), which still had an overall detection rate
of 0.85. This lower detection rate reflects the challenges
of differentiating between high annual variation in NChao2

and gradual declines over a longer time period. However,
even when significance is not achieved, the likelihood of
mistaking a gradual trend remains low because temporal
dynamics between null model simulations of no growth
and the most gradual declines were fundamentally dif-
ferent. For example, sustained directional trends in pd
and first derivative estimates provide clear inference that
gradual changes are taking place regardless of statistical
significance. These patterns would serve as early indica-
tions of significant future change, or at least increasing
evidence of a sustained gradual effect. In either case, com-
parisons of the smoothed NChao2 estimates over relevant
time scales would allow evaluation of whether a meaning-
ful effect had taken place. Additionally, temporal patterns
in pd shifts provide important information for interpret-
ing short-term dynamics, particularly initial shifts from
stable periods and attenuation after peaks. These findings
highlight the value of trend assessment involving the syn-
thesis of a suite of trend detection metrics, rather than the
result of a single metric as currently applied with the use
of AICc weights. This new framework can be applied to
the entire time series of NChao2 estimates for retrospec-
tive analysis and future population monitoring. Further-
more, the GAM-based framework and metrics can easily
be applied to monitoring programs of other populations
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16 YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al.

Fig. 8. Estimates of NChao2 derived from the number of unique female grizzly bears (Ursus arctos) with cubs in
the Greater Yellowstone Ecosystem (Demographic Monitoring Area) during 2001–2019, based on application
of the Knight et al. (1995) rule set using 16-km (left panels) and 30-km (right panels) distance criteria. (A)
and (B) number of estimated females with cubs using fitted generalized additive model (GAM) estimates of
3-year moving averages of NChao2 estimates (NChao23t̄

). Each annual estimate is the endpoint of a time series
with data starting in 1992, allowing for 10 years of initial data to fit the GAMs (i.e., first estimate is for 2001),
and reflecting practical implementation of these techniques. Large circles show the median and black vertical
lines show the upper (0.975) and lower (0.025) quantiles for the region containing 95% of posterior simulation
values; red circles indicate significant increase based on the first derivative (rate of change) of NChao2, whereas
black circles indicate no significant change based on first derivative values (see panels C and D). Raw annual
NChao2 estimates (small gray circles connected by gray dashed line) are shown for reference. (C) and (D) first
derivative (rate of change) of NChao2; black circles indicate median of posterior distribution and vertical black
lines show the upper (0.975) and lower (0.025) quantiles for the region containing 95% of posterior simulation
values; where vertical black lines intersect the red dashed (zero) line, the rate of change was not significant.
Data associated with these graphs are available in Supplemental Materials (Appendix E).

or species. Indeed, the value of GAM-based techniques
for long-term wildlife monitoring programs were previ-
ously recognized (e.g., greater sage-grouse [Centrocer-
cus urophasianus]; Fedy and Aldridge 2011) but have
not received widespread use among bear biologists. In
combination with tools such as the first derivative and
probability of decline, these techniques offer powerful
tools for trend detection.

As with any analyses involving simulations, there are a
number of caveats to these findings. First, we emphasize
that our conclusions were based on obtaining unbiased av-
erage estimates from simulations with different levels of
known females with cubs. The empirical data were equiv-

alent to a single simulation run and, by chance, could rep-
resent a time series that diverges from central tendencies.
We accounted for this statistical reality in our recommen-
dations of the 16-km distance criterion, but this approach
still does not guarantee an absence of overestimation dur-
ing a single year. This potential for overestimation is one
reason that smoothing of these time series is important,
such as using GAMs and 3-year moving averages. Sec-
ond, similar to the limitations that Schwartz et al. (2008)
identified regarding their analyses, the sampling frame
we generated used data that were not specifically col-
lected to evaluate the distance criteria. For example, we
had to combine multiple years of data to create a sampling
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frame that allowed adequate “sampling” of annual sight-
ings for the simulations and assume it was reflective of
how sightings are collected in any given year. Although
this is a reasonable assumption, it may not be entirely ac-
curate. Third, we focused on the distance criterion in the
rule set of Knight et al. (1995) because of its overarching
implications on the outcome (Schwartz et al. 2008). How-
ever, there are other criteria in the rule set that we did not
explicitly investigate because of their limited role (e.g.,
time between sightings, upper Grand Canyon of the Yel-
lowstone River and paved roads as movement barriers).
Finally, we emphasized scenarios we deemed relevant
to managers and represented realistic changes in popu-
lation trends. Although actual population scenarios will
differ, our purpose was to understand the effectiveness of
the proposed population monitoring tools to capture this
range of dynamics.

We applied the 16-km distance criterion and the pro-
posed GAM approach for smoothing and trend detection
to empirical estimates of females with cubs for 1996–
2019 to demonstrate how the findings of this study would
be implemented in the monitoring program and enhance
interpretation (Fig. 8). During 2019, for example, the me-
dian posterior smoothed Chao2 estimate using the 16-km
distance criterion was 81.2 (95% CI = 73.3–89.2) fe-
males with cubs (Fig. 8A). The median posterior first
derivative of the fitted GAM was 0.88 (95% CI = −0.25–
2.01); although the 95% confidence interval overlapped
0, there was 94% support for the slope being >0 (i.e.,
increasing population trend), providing useful inference
for managers beyond that of statistical significance. For
comparison, we also applied the 30-km distance crite-
rion to these same data and, as expected, estimates of
NChao2 were lower (Fig. 8B). The higher values under the
16-km criterion were due to larger estimates of m but
also to the Chao2 adjustment representing a greater pro-
portion of the overall NChao2 estimate: the mean Chao2
adjustment for this time period represented 14% of the
estimate for the 30-km distance criterion, but 27% of the
estimate for the 16-km criterion. Similar to our simula-
tion findings, the greater proportion associated with the
Chao2 adjustment is partly a function of an increase in
f1 frequencies relative to f2 frequencies when shifting the
distance criterion from 30 km to 16 km. That a more ac-
curate distance criterion results in a greater proportion of
individuals that are only sighted once is not unexpected
given the low sighting probabilities of this secretive car-
nivore. The rate of change of NChao2 estimates based on
the first derivative was positive for all years and both
distance criteria, with larger estimates and higher growth
rates indicated for the 16-km criterion, although estimates

were not statistically significant in several years (Fig. 8C
and 8D). First derivatives indicated greater sensitivity to
change for the 16-km criterion compared with the 30-km
criterion.

Management implications
The 16-km distance criterion results in estimates that

are greater than previously reported, and our simulations
and comparison with independent mark–resight data sug-
gest they more accurately represent the number of females
with cubs in the Yellowstone grizzly bear population. For
example, the 2019 NChao2 estimate of 81 females with
cubs using the 16-km distance criterion and GAMs is
40% greater than the 2019 estimate of 58 females with
cubs based on the 30-km distance criterion and model-
averaging (Haroldson et al. 2020). Implementation of the
16-km distance criterion combined with use of GAM
techniques would affect several population metrics that
are derived from the NChao2 estimates and are used to in-
form management responses (e.g., total population size
and uncertainty, population trend, mortality rates). To il-
lustrate, the 2019 estimate for total population size of 737
using the 30-km distance criterion would be equivalent to
1,029 bears under the 16-km criterion. In turn, the higher
population estimates result in more accurate depictions
of total mortality, and both have implications for evalua-
tion of population metrics specified in the 2016 Conser-
vation Strategy for the Yellowstone grizzly bear popu-
lation (Yellowstone Ecosystem Subcommittee 2016:36).
Implementation of the 16-km criterion and GAMs would
require relatively minor changes in the monitoring pro-
tocols described in appendices of the 2016 Conservation
Strategy (Yellowstone Ecosystem Subcommittee 2016).

The IGBST has ongoing investigations into the mer-
its of an integrated population model, for which an-
nual Chao2-based estimates are important input data, and
plans to continue those investigations using the 16-km
distance criterion. Finally, we note that the findings from
this work emphasize that high inter-annual variation of
NChao2 estimates constrains population monitoring. Of
course, variation over time is inherent and expected for
any wildlife population. However, variation of NChao2 es-
timates is in part driven by substantial sampling variance.
Future monitoring efforts should strive to develop strate-
gies to reduce this source of variation.

Acknowledgments
We appreciate the constructive comments from As-

sociate Editor M. Obbard and 2 anonymous reviewers,
which substantially improved the manuscript. We thank

Ursus 33:article e17 (2022)

Downloaded From: https://bioone.org/journals/Ursus on 13 Jan 2023
Terms of Use: https://bioone.org/terms-of-use	Access provided by United States Geological Survey



18 YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al.

R. Harris, J. Teisberg, and J.D. Clark for their review of a
report and drafts of this manuscript as part of the U.S. Ge-
ological Survey’s Fundamental Science Practices. We are
grateful to the partner agencies of the Interagency Griz-
zly Bear Study Team for their continued support of our
research and monitoring efforts: U.S. Geological Survey,
National Park Service; U.S. Fish and Wildlife Service;
U.S. Forest Service; Wyoming Game and Fish Depart-
ment; Montana Fish, Wildlife and Parks; Idaho Depart-
ment of Fish and Game; and the Eastern Shoshone and
Northern Arapaho Tribal Fish and Game Department.
Any use of trade, firm, or product names is for descrip-
tive purposes only and does not imply endorsement by
the U.S., State, or Tribal Governments.

Literature cited
BJORNLIE, D.D., F.T. VAN MANEN, M.R. EBINGER, M.A.

HAROLDSON, D.J. THOMPSON, AND C.M. COSTELLO. 2014.
Whitebark pine, population density, and home-range size of
grizzly bears in the Greater Yellowstone Ecosystem. PLoS
ONE 9(2):e88160.

BLANCHARD, B.M., AND R.R. KNIGHT. 1991. Movements
of Yellowstone grizzly bears. Biological Conservation 58:
41–67.

BRODIE, J. F., AND M. L. GIBEAU. 2007. Brown bear population
trends from demographic and monitoring-based estimators.
Ursus 18:137–144.

CHAO, A. 1989. Estimating population size for sparse data in
capture–recapture experiments. Biometrics 45:427–438.

CHERRY, S., G.C. WHITE, K.A. KEATING, M.A. HAROLDSON,
AND C.C. SCHWARTZ. 2007. Evaluating estimators of the
number of females with cubs-of-the-year in the Yellowstone
grizzly bear population. Journal of Agricultural, Biological,
and Environmental Statistics 12:195–215.

DEVROYE, L. 1986. Non-uniform random variate generation.
Chapter 2: General principles in random variate gen-
eration. Springer-Verlag, New York, New York, USA.
http://luc.devroye.org/rnbookindex.html. Accessed 15 Sep
2022.

EBERHARDT, L.L., R.A. GARROTT, AND B.L. BECKER. 1999.
Using trend indices for endangered species. Marine Mam-
mal Science 15:766–785.

FEDY, B.C., AND C.L. ALDRIDGE. 2011. The importance of
within-year repeated counts and the influence of scale on
long-term monitoring of sage-grouse. Journal of Wildlife
Management 75:1022–1033.

GRANDINI, M., E. BAGLI, AND G. VISANI. 2020. Metrics
for multi-class classification: An overview. arXiv:2008.
05756v1. https://arxiv.org/pdf/2008.05756.pdf. Accessed
15 Sep 2022.

HAROLDSON, M.A., B.E. KARABENSH, F.T. VAN MANEN, AND

D.D. BJORNLIE. 2020. Estimating number of females with
cubs. Pages 12–22 in F.T. van Manen, M.A. Haroldson, and

B.E. Karabensh, editors. Yellowstone grizzly bear inves-
tigations: Annual report of the Interagency Grizzly Bear
Study Team, 2019. U.S. Geological Survey, Bozeman, Mon-
tana, USA. https://www.sciencebase.gov/catalog/file/get/
6266a697d34e76103cce5808?f=__disk__87%2F3c%2Fcb
%2F873ccbe0529fe4471c289a2f442420dcfac7059a. Ac-
cessed 15 Sep 2022.

———, F.T. VAN MANEN, AND D.D. BJORNLIE. 2017. Es-
timating number of females with cubs. Pages 15–24 in
F.T. van Manen, M.A. Haroldson, and B.E. Karabensh,
editors. Yellowstone grizzly bear investigations: Annual
report of the Interagency Grizzly Bear Study Team, 2016.
U.S. Geological Survey, Bozeman, Montana, USA. https://
www.sciencebase.gov/catalog/file/get/6266a697d34e76103
cce5808?f=__disk__a1%2F87%2Fe7%2Fa187e75c128cd
250f77e0e549d1081f5c071191e. Accessed 15 Sep 2022.

HARRIS, R.B., G.C. WHITE, C.C. SCHWARTZ, AND M.A.
HAROLDSON. 2007. Population growth of Yellowstone griz-
zly bears: Uncertainty and future monitoring. Ursus 18:
168–178.

HIGGS, M.D., W.A. LINK, G.C. WHITE, M.A. HAROLDSON, AND

D.D. BJORMLIE. 2013. Insights into the latent multinomial
model through mark–resight data on female grizzly bears
with cubs-of-the-year. Journal of Agricultural, Biological,
and Environmental Statistics 18:556–577.

[IGBST] INTERAGENCY GRIZZLY BEAR STUDY TEAM. 2006.
Reassessing methods to estimate population size and sus-
tainable mortality limits for the Yellowstone grizzly bear:
Workshop document supplement. U.S. Geological Survey,
Northern Rocky Mountain Science Center, Montana State
University, Bozeman, Montana, USA.

———. 2012. Updating and evaluating approaches to esti-
mate population size and sustainable mortality limits for
grizzly bears in the Greater Yellowstone Ecosystem. Inter-
agency Grizzly Bear Study Team, U.S. Geological Survey,
Northern Rocky Mountain Science Center, Bozeman, Mon-
tana, USA. https://www.sciencebase.gov/catalog/file/get/
6266a697d34e76103cce5808?f=__disk__d5/b2/f9/d5b2f9
d6bd27fce053e6b7087826ae8052ca40d7. Accessed 15 Sep
2022.

———. 2021. A reassessment of Chao2 estimates for popula-
tion monitoring of grizzly bears in the Greater Yellowstone
Ecosystem. Interagency Grizzly Bear Study Team, U.S.
Geological Survey, Northern Rocky Mountain Science Cen-
ter, Bozeman, Montana, USA. https://www.sciencebase.
gov/catalog/file/get/6266a697d34e76103cce5808?f=__disk
__f0/42/5e/f0425e8a8e4ad709c8d1f03846b6549e755299ef.
Accessed 15 Sep 2022.

KEATING, K.A., C.C. SCHWARTZ, M.A. HAROLDSON, AND D.
MOODY. 2002. Estimating numbers of females with cubs-of-
the-year in the Yellowstone grizzly bear population. Ursus
13:161–174.

KIM, Y.J., AND C. GU. 2004. Smoothing spline Gaussian regres-
sion: More scalable computation via efficient approxima-
tion. Journal of the Royal Statistical Society B 66:337–356.

Ursus 33:article e17 (2022)

Downloaded From: https://bioone.org/journals/Ursus on 13 Jan 2023
Terms of Use: https://bioone.org/terms-of-use	Access provided by United States Geological Survey



YELLOWSTONE GRIZZLY BEAR POPULATION MONITORING � van Manen et al. 19

KNIGHT, R.R., B.M. BLANCHARD, AND L.L. EBERHARDT. 1995.
Appraising status of the Yellowstone grizzly bear population
by counting females with cubs-of-the-year. Wildlife Society
Bulletin 23:245–248.

———, AND L.L. EBERHARDT. 1984. Projected future abun-
dance of the Yellowstone grizzly bear. Journal of Wildlife
Management 48:1434–1438.

LEVER, J., M. KRZYWINSKI, AND N. ALTMAN. 2016. Points
of significance: Logistic regression. Nature Methods 13:
541–542.

ORDIZ, A., C. RODRÍGUEZ, J. NAVES, A. FERNÁNDEZ, D. HUBER,
P. KACZENSKY, A. MERTENS, Y. MERTZANIS, A. MUSTONI,
S. PALAZÓN, P.Y. QUENETTE, G. RAUER, AND J.E. SWENSON.
2007. Distance-based criteria to identify minimum num-
ber of brown bear females with cubs in Europe. Ursus 18:
158–167

PALOMERO, G., F. BALLESTEROS, C. NORES, J.C. BLANCO, J.
HERRERO, AND A. GARCÍA-SERRANO. 2007. Trends in num-
ber and distribution of brown bear females with cubs-of-the-
year in the Cantabrian Mountains, Spain. Ursus 18:145–157.

———, A. FERNÁNDEZ-GIL, AND J. NAVES. 1997. Reproduc-
tive rates of brown bears in the Cantabrian Mountains, Spain.
International Conference on Bear Research and Manage-
ment 9:129–132.

PECK, C.P. 2016. Defining and assessing trend using mark–
resight estimates for the number of female grizzly bears with
cubs-of-the-year in the Greater Yellowstone Ecosystem. Fi-
nal report to the Interagency Grizzly Bear Study Team, De-
partment of Mathematical Sciences, Montana State Univer-
sity, Bozeman, Montana, USA.

R CORE TEAM. 2019. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing,
Vienna, Austria. https://www.R-project.org/

SCHWARTZ, C.C., M.A. HAROLDSON, S. CHERRY, AND K.A.
KEATING. 2008. Evaluation of rules to distinguish unique
female grizzly bears with cubs in Yellowstone. Journal of
Wildlife Management 72:543–554.

SIMPSON, G.L. 2018. Modelling palaeoecological time series
using generalised additive models. Frontiers in Ecology and
Evolution 6:149.

———. 2019. Gratia: Graceful ‘ggplot’-based graphics and
other functions for GAMs fitted using ‘mgcv’. R package
version 0.2-8. https://CRAN.R-project.org/package=gratia.
Accessed 15 Sep 2022.

[ESA] U.S. ENDANGERED SPECIES ACT OF 1973, as
amended, Pub. L. No. 93-205, 87 Stat. 884 (1973).
https://www.govinfo.gov/content/pkg/STATUTE-87/pdf /
STATUTE-87-Pg884.pdf. Accessed 9 Dec 2022.

U.S. FISH AND WILDLIFE SERVICE. 2017. Final rule; avail-
ability of final Grizzly Bear Recovery Plan Supplement:

Revised demographic criteria. 50 CFR 17. Federal Register
82(125):30502–30633. https://www.govinfo.gov/content/
pkg/FR-2017-06-30/pdf/2017-13160.pdf. Accessed 15 Sep
2022.

VAN MANEN, F.T., M.R. EBINGER, M.A. HAROLDSON, R.B.
HARRIS, M.D HIGGS, S. CHERRY, G.C. WHITE, AND C.C.
SCHWARTZ. 2014. Re-evaluation of Yellowstone grizzly bear
population dynamics not supported by empirical data: Re-
sponse to Doak & Cutler. Conservation Letters 7:323–331.

———, M.A. HAROLDSON, D.D. BJORNLIE, M.R. EBINGER,
D.J. THOMPSON, C.M. COSTELLO, AND G.C. WHITE. 2016.
Density dependence, whitebark pine decline, and changing
vital rates of Yellowstone grizzly bears. Journal of Wildlife
Management 80:300–313.

WOOD, S.N. 2004. Stable and efficient multiple smoothing pa-
rameter estimation for generalized additive models. Journal
of the American Statistical Association 99:673–686.

———. 2006. Generalized additive models: An introduction
with R. CRC Press, Boca Raton, Florida, USA.

———. 2011. Fast stable restricted maximum likelihood and
marginal likelihood estimation of semiparametric general-
ized linear models. Journal of the Royal Statistical Society
B 73:3–36.

———. 2017. Generalized additive models: An introduction
with R. Second edition. CRC Press, Boca Raton, Florida,
USA.

YELLOWSTONE ECOSYSTEM SUBCOMMITTEE. 2016. 2016 Con-
servation Strategy for the grizzly bears in the Greater Yel-
lowstone Ecosystem. Yellowstone Ecosystem Subcommit-
tee, Interagency Grizzly Bear Committee, Missoula, Mon-
tana, USA. https://igbconline.org/document/161216_final-
conservation-strategy_signed-pdf. Accessed 15 Sep 2022.

Received: January 21, 2022
Accepted: August 5, 2022
Associate Editor: M. Obbard

Supplemental materials
Appendix A: Linking Empirical and Simulation

Data

Appendix B: Supplemental Tables and Figures

Appendix C: Posterior Simulation for Evaluation
of GAMs

Appendix D: Summary Statistics of Simulated Data
Sets

Appendix E: Numerical Data for Fig. 8

Ursus 33:article e17 (2022)

Downloaded From: https://bioone.org/journals/Ursus on 13 Jan 2023
Terms of Use: https://bioone.org/terms-of-use	Access provided by United States Geological Survey




